2023-04-07

外用药物的生物等效方法学:皮质类固醇和抗真菌药物的体外和离体研究

半固体制剂仿制药物的研究迫切需要开发合适的方法,作为临床终点研究的替代方案,以确定外用皮肤产品的生物等效性。一般而言,监管机构可以接受不同类型的证据,以根据剂型的复杂性以及制剂之间的相似性来确定生物等效性;例如,如果具有相同数量的活性成分的溶液配方含有相同数量的非活性成分,那么可以认为不等效的风险是固有的低。然而,对于辅料组成或剂型(例如凝胶与乳霜)上存在差异的半固体配方,其中活性成分在皮肤中的分配和/或扩散可能被改变。但是,由于临床试验相对不敏感、耗时且成本高昂;为了获得足够的统计能力来清晰地评估生物等效性,可能需要大量(即数百个)受试者。这将产生较为高昂的成本。 因此,有必要验证一种或多种可以替代临床疗效研究的评估方法,以证明生物等效性(BE)。表I总结了测定局部生物利用度(BA)和BE的主要方案,可分为体外和体内方法。表中列出了那些尚未获得美国FDA正式批准的方法,作为评估外用BA/BE的独立方法,以及在某种程度上用于比较不同外用药物产品的其他方法。 在这项研究中,我们参考Leila Bastos Leal 的研究报告,针对戊酸倍他米松(BMV)和抗真菌药物硝酸益康唑(EN)的配方,考虑了评估外用BE的替代方法,此前已在人体志愿者的体内角质层剥离实验中进行了检测。对于BMV,这些制剂是临时制备的,与公认的血管收缩试验相比,它们彼此之间明显不等效,作为阳性对照。以EN为例,胶带剥离数据证实了临床试验的结果,该试验发现三种乳膏具有生物等效性。这里,两种药物的制剂首先使用人工膜进行体外释放测试,然后使用猪皮肤样本在离外胶带剥离方案中进行比较。还进行了一次有限但最终无信息的体外皮肤渗透试验(同样使用切除的猪皮肤)。 1.1 配方 制备了两种配方的戊酸倍他米松(BMV,Sigma Aldrich,Gillingham,UK)制剂,与先前描述的完全相同:(a)溶于中链甘油三酯(MCT)(Mygliol 812 N,Synopharm,Barsbüttel,Germany),和(b)溶于微乳液Mikro 100®(ME)(Sebapharma,Boppard,German)。将载体用6%(w/w)Aerosil®200(Sigma Aldrich)增稠成半固体凝胶。将两种制剂中的BMV浓度调整至药物溶解度的80%(ME和MCT分别为9.3和1.7 mg mL−1),以提供等效的热力学活性。 与早期详细的人体胶带剥离研究类似(相关阅读:使用ivrt研究局部作用药物的体外体内相关性),考虑了三种市售硝酸益康唑(EN)配方(1%w/v):参考上市产品Fougera®(E.Fougera&Co.,Melville,NY),以及Perrigo(纽约布朗克斯)和Taro(纽约霍桑)的两种仿制乳膏(在FDA橙色书中列为AB)。 1.2 体外释放实验(IVRT) 1.3 体外皮肤渗透 IVPT实验方法如表3所示,实验结束后拆卸扩散池,并保留整个接受室溶液用于渗透药物的分析。 1.4离体胶带剥离实验 取1.3中实验结束后的猪皮,按照下面的要求做离体实验。 对于BMV,首先用干纸巾擦拭,然后使用该干燥擦拭程序,再加上使用两个连续的70%v/v异丙醇棉签清洁皮肤表面残余的制剂。 对于EN,皮肤表面清洁程序仅使用酒精棉签 随后,对于这两种药物,将皮肤牢牢地固定在聚苯乙烯板上,并用模板界定中心区域,其面积等于暴露于制剂的面积。然后,通过胶带剥离依次去除该部位的角质层(SC)。在胶带剥离过程之前和整个过程中同时进行的经表皮水分损失(TEWL)。测量表明,大部分SC被去除(此时TEWL已达到100g/m2/h或更高的值)为终点;这样做所需的胶带条数约在8至30条之间。 然后,通过用合适体积(在两种情况下均为1mL)的提取溶剂(对于BMV为40:60v/v乙腈:水,对于EN为纯甲醇)震荡过夜,从粘合剂中提取药物,来确定每个胶带条上去除的药物量。为了优化检测灵敏度,通常以4个为一组对来自深层SC的胶带进行分析。 在单独的一系列EN实验中,皮肤表面在6小时内清洁残余制剂后,将组织置于烘箱中(保持在32°C;皮肤的真皮层要充分补水)。再过17小时后,SC胶带剥离过程完全如上所述进行。这项工作的目的是模拟早期人体体内研究的“药物清除”期。 1.5 数据分析 1.5.1 IVRT 体外释放实验 结果以累积药物释放量作为时间的函数表示,并比较了不同配方的行为。评估了描述释放曲线的最合适函数(例如,线性、t1/2动力学)。 1.5.2离体胶带剥离 如果在6小时内未检测到可测量的BMV或EN渗透进入扩散池受体室时,则无需解释此类数据。 对于BMV,在吸收6小时后,整个SC的药物浓度分布(C作为深度位置x的函数)符合初始无药物SC表面(x = 0)恒定载药浓度(Cveh)的Fick第二扩散定律: 以导出SC载体分配系数(K)的值以及药物的SC扩散率与SC厚度平方的比值(D/L2),如先前工作中所述。此外,使用SC厚度的独立评估来估计SC上的渗透系数(kp)和稳态通量(Jss)。 在EN的情况下,对结果进行了更直接的分析,反映了在人类志愿者中进行的胶带剥离研究中所采用的方法。在这里,药物的吸收和清除是由立即或清洁后17小时收集的SC胶带条中回收的总药物量来确定的 1.6 统计分析 由于本研究的目的不是考虑的两种药物的不同配方之间建立生物等效性,因此本研究的体外和体外部分所采用的重复次数并非基于严格的幂函数计算。相反,选择的“n”值与先前体内实验中使用的值相匹配(BMV的n=6,EN的n=14)。 统计分析采用双尾Student‘s t检验和单、双因素方差分析(ANOVA)以及Bonferroni’s检验;p值小于0.05被认为具有统计学意义。 2.1 IVRT实验结果 使用BMV制剂的IVRT显示,没有可测量量的药物穿过多孔疏水膜或硅胶膜进入接受室。然而,在亲水膜上观察到BMV释放。微乳凝胶(ME)在6小时内释放1430(±161)μg cm−2,而中链甘油三酯制剂(MCT)的相应量为7.7(±0.8)μg cm−2。这两个量的巨大差异可能是由于表面活性剂从ME凝胶中同时扩散,促进BMV在接受室中的溶解所致。对于这两种制剂,药物释放都用典型的时间依赖性平方根来描述。 检测到所用三种膜中每一种膜上所有三种制剂中EN的释放(图1)。尽管在6小时内释放的累积量根据所用的膜而具有显著差异(ANOVA随后进行事后测试),但在每个膜内,三种制剂的药物释放没有显著差异,与产品原设计一致——不同人工膜并不影响药物是否一致的判断。 2.2 IVPT测试 2.2.1 BMV的IVPT研究结果 在6小时实验结束时,在接受溶液中未发现BMV,表明在如此短的时间内无论使用何种载体,其都无法穿过皮肤。EN也是如此,这一发现与早期的人体胶带剥离研究一致,其结果表明滞后时间约为13小时 图2(左图)显示了作为SC内位置的函数的BMV浓度曲线,该曲线是在用凝胶化中链甘油三酯(MCT)和微乳液(ME)凝胶制剂处理6小时后通过离体胶带剥离实验确定的;在这些实验中,用干纸巾擦拭皮肤表面。将数据与已发表的人体志愿者体内研究的相应结果(右图)进行比较 l如上所述导出的分配和表观扩散参数如图3所示,以及6小时时进入SC的药物总量,以及渗透系数和表观稳态通量的估计值。这些结果再次与早期体内实验报告的结果进行了比较。对于这两种制剂,在体外获得的研究参数与人体研究的参数非常一致(且无显著差异);同样,从志愿者的人体胶带剥离实验中观察到,与MCT制剂相比,微乳液中BMV渗入SC的量和药物的表观稳态通量几乎高出一个数量级(体外8.7倍,体内7.2倍)。 当用异丙醇棉签更严格地清洁皮肤,重复体外实验时,两种制剂的Q6h值都降低了约50%(数据未显示),证实了这种方法是去除残留制剂的更可靠的方法。 2.2.2 EN的IVPT测试结果 硝酸益康唑(EN)的离体胶带剥离实验采用与已发表的人体研究相同的方案进行。重复测定相同数量的SC对药物的吸收和清除,注意在三种乳膏中暴露6小时后彻底清洁皮肤表面,并确保在胶带剥离过程中基本上去除所有SC。图4报告了在6小时渗入和随后的17小时清除期后从SC中回收的EN的量。 对吸收和清除结果的方差分析表明,所考虑的三种配方之间没有显著差异。同样值得注意的是,对于每种EN乳膏,在吸收和清除期后SC中回收的药物量之间没有显著差异。所得数据的平均值以及上下90%置信区间(C.I.)收集在表II中。 表2 服用三种药物后服用和清除期SC中EN的平均量(n=14),以及相应的90%置信区间上限和下限(C.I.) 由于所测试的三种乳膏中的每一种的吸收和清除值难以区分,因此使用两种测试配方(Perrigo和Taro)的平均值与参考配方(Fougera)的[吸收+清除]比率和组合结果评估产品之间的等效性。使用原始数据(图4)和对数转换结果进行计算。在0.8至1.25(2,17)的常规范围内,结果基本相同,总结在表III中 表3 模拟生物等效性评估,基于组合[摄取+清除]数据(n=28),以Fougera为“参考产品”,Perrigo和Taro为“测试”的三种EN cream之间 IVRT结果显示了所考虑的两种药物之间的不同行为。一方面,通过使用的三种不同的人工膜,可以很容易地测量三种测试产品中EN的释放。此外,不同配方的释放特性在每个膜上都是相同的。然而,当比较从不同膜获得的数据时,这些图谱在定量上没有重叠,并且穿过亲水纤维素屏障的图谱形状与穿过两个疏水膜的图谱形状不同(图1)。对于BMV来说,在6小时内,药物无法通过两个疏水膜释放,推测这反映了药物在这些人工膜屏障中的高溶解度。相比之下,通过亲水纤维素的释放是可检测的,并以经典的时间平方根依赖进行,亲水膜能够区分了测试的两种配方。 从这些实验中得到的信息应该是明确的,并且在之前就已经被阐明。具体而言,尽管IVRT可以提供关于(例如)不同生产批次一致性的有用质量的控制信息,但仅从这些测量值预测药物在体内的相对或绝对生物利用度是不明智的。EN数据表明,释放的量因所用膜的不同而不同,通过膜“传递”的量甚至可能远远高于仅在同一时期进入SC的量。尽管IVRT显示的三种EN产品的表观等效性在体内和体外条带剥离研究中都得到了反映(并且确实与临床表现一致),但应根据BMV的结果仔细考虑任何推断的相关性。对于这种药物,在两种情况下,IVRT显示没有药物渗透。因此,单一的人工膜不仅不太可能用于所有药物的IVRT方法的标准化,而且,即使有,它也能够模仿在真实皮肤上的任何配方效果(例如,作为渗透促进剂的辅料的作用)。 使用BMV进行的离体SC胶带剥离实验显示出与先前发表的人体研究(图2和图3)在定性和定量上表现出非常好的一致性。结果表明,仔细进行的离体皮肤研究(在这种情况下,离体皮肤来自公认的和普遍认为可接受的人体屏障模型可以有效地预测体内情况,如前所述。虽然这一策略不太可能最终演变成任何形式的监管指南,但替代的体外方法在配方开发和优化方面可能具有吸引力。 从与先前发表的人体数据的相关性角度来看,EN离体胶带剥离研究的结果是混合的。从积极的方面来看,6小时内药物渗入离体猪皮肤的SC与人体数据完全相关,(正确地)证明了测试的三种药物产品之间的等效性(表II和III)。相反,尽管研究中清除部分的结果自洽,因为它们也表明了配方的等效性(图4),但数据与早期的体内观察有所不同。在体内,在清除阶段,益康唑的SC水平降低了约30%,但在离外条件,没有降低。对这一观察结果最有可能也是最明显的解释是,切除的皮肤缺乏正常的微循环,因此无法提供清除像益康唑这样的亲脂性药物所需的吸收条件。因此,该活性部分倾向于保留在SC中,并且在去除残余制剂后的17小时内不会显著耗尽。这意味着,用于评估局部生物等效性的离体胶带剥离方法可能无法常规提供关于“皮肤药代动力学”消除方面的信息,特别是对于具有高log P值的药物。然而,这并不意味着这些实验毫无价值;相反,吸收阶段的数据对于优化体内实验的设计以及为临床评估所考虑的原型制剂的性能提供有价值的见解非常有用。尽管如此,对这里使用的方案做适当修改可能允许这种方法也阐明了清除过程;例如,保持皮肤与大体积的接受室接触,或使用流通选项,以及使用切除皮肤的较薄部分是值得研究的策略。 总之,本研究的结果证实,IVRT和SC胶带剥离等技术是表征局部药物产品性能的可靠方法,有助于活性药物成分在皮肤中的最终生物利用度。然而,这里使用的每种方法都有上文所述的局限性: IVRT可以解决配方质量的特点,但不能报告产品与皮肤的相互作用方式 SC离体胶带剥离允许很好地预测体内药物进入SC的吸收,但是,关于药物清除率的测定,需要仔细注意实验设计的优化。

查看更多
2023-03-18

经皮和局部给药系统——产品开发和质量考量工业指南翻译稿(下部分)

An applicant must provide technical data and information in sufficient detail to permit the Agency to make a knowledgeable judgment about whether to approve the application or whether grounds exist under section 505(d) or 505(j) of the FD&C Act to refuse to approve the application. This includes information about the drug substance and information about the TDS product. 申请人必须提供足够详细的技术数据和信息,以使FDA能够对是否批准申请做出明智的判断,或者是否存在《FD&C法案》第505(d)或505(j)节规定的拒绝批准申请的理由。这包括关于药物物质的信息和关于TDS产品的信息。 The following sections provide recommendations to applicants about pharmaceutical development and quality information to be included in the application sections described in ICH M4Q. 以下各部分向申请人提供了关于药物开发和质量信息的建议,这些信息将包含在ICH M4Q中所述的应用章节中. A.Pharmaceutical Development/药物研发 As described in ICH M4Q, section 3.2.P.2 of the application should contain information on studies conducted to establish that the dosage form, formulation, manufacturing process, container closure system, microbiological attributes, and usage instructions specified in the application are appropriate for the intended use of the TDS product. The applicant should address the following: 如ICH M4Q第3.2.P.2节所述。申请应包含进行研究的信息,以确定申请中规定的剂型、配方、制造工艺、容器闭合系统、微生物属性和使用说明适用于TDS产品的预期用途。申请人应解决以下问题: lA descr1ption of the QTPP/QTPP说明 lA list of the CQAs of the TDS product, along with the limit, range, or distribution associated with each CQA and appropriate justification. TDS产品的CQAs列表,以及与每个CQAs相关的限制、范围或分布以及适当的理由。 lIdentification of those aspects of the drug substance, excipients, container closure system, and manufacturing processes important to attaining product quality.  API、赋形剂、包装容器系统和制造工艺对实现产品质量至关重要的方面的识别。 ●In particular, the selection of excipients and components, their concentrations (as appropriate), and their functional characteristics affecting TDS performance should be discussed. For example, the applicant should describe the impact of penetration enhancers on the adhesive properties of the TDS, solubility of the drug substance in the blend, and skin permeation. 特别应讨论影响TDS性能的赋形剂和成分的选择、其浓度(视情况而定)及其功能特性。例如,申请人应描述渗透促进剂对TDS的粘合性能、API在混合物中的溶解度和皮肤渗透的影响。 ●Applicants should specify the allowable ranges around the process parameters and material attributes that have a potential to impact TDS product CQAs with justification and describe how they will be monitored. 申请人应说明可能影响TDS产品CQA的工艺参数和材料属性的允许范围,并说明如何对其进行监控。 lA descr1ption of the quality risk assessments, potential failure modes, and product and process control strategies/质量风险评估、潜在故障模式以及产品和过程控制策略的描述。 1.Batch Formula/批次处方 For processes that use solvated raw materials, batch formulas should be designed to tolerate variation in the solvent content of raw materials. Drug substance overages and excipient excesses can be added to a batch to account for evaporation during drying, but the amount of overage or excess should be controlled and justified by process development studies. Applicants should describe any cross-linking reactions since these reactions impact the chemical composition and quality of the finished product. 对于使用溶剂化原料的工艺,批次配方的设计应能承受原料溶剂的含量变化。过量的API和过量的辅料可添加到批次中,以解决干燥过程中的蒸发问题,但过量或过量的量应通过工艺开发研究加以控制和证明。申请人应描述任何一种交联反应,因为这些反应影响成品的化学成分和质量。 2.Expectations for Registration/Exhibit Batches.对注册/展示批次的期望 Applicants should submit data for registration/exhibit batches manufactured from three distinct laminates, where each laminate is made using different lots of drug substance, adhesives, backing, and/or other critical elements in the TDS product. Release and stability sampling should be representative of the full length and width of the laminates to demonstrate that the manufacturing process is robust 申请人应提交由三种不同层压材料制成的注册/展示批次的数据,其中每个层压材料使用不同批次的药物、粘合剂、背衬和/或TDS产品中的其他关键元素制成。释放和稳定性取样应代表层压板的整个长度和宽度,以证明制造过程稳健 Any clinical batch (e.g., those used in phase 3, PK, BE, adhesion, or irritation and sensitization studies) should be included in the formal stability program. Applicants should provide the executed batch records and certificates of analysis for all batches used in clinical and BE studies, including placebo batches. Placebo batches should include all inactive ingredients and components and representative printing 任何临床批次(例如,在第3阶段、PK、BE、粘附或刺激和致敏研究中使用的批次)都应包含在正式的稳定性计划中。申请人应提供临床和BE研究中使用的所有批次(包括安慰剂批次)的执行批次记录和分析证书。安慰剂批次应包括所有非活性成分和成分以及代表性印刷。 Applicants should report the actual yields, theoretical yield, and percentages of theoretical yield from the conclusion of each appropriate phase of manufacturing, processing, packaging, and holding. The theoretical yield should be calculated for each batch prospectively. For example, if a coating process is stopped due to a manufacturing issue, the theoretical yield should be based on the mass that was intended to be coated rather than the mass that was actually coated. The yield for TDS processes may be lower than the usual yield for many other drug manufacturing processes. However, abnormally low yields in the TDS submission batches should be explained in the application 申请人应报告制造、加工、包装和保存每个适当阶段结束时的实际产量、理论产量和理论产量百分比。应前瞻性地计算每批的理论产量。例如,如果由于制造问题而停止了涂覆过程,则理论产量应基于打算涂覆的质量,而不是实际涂覆的质量。TDS工艺的产率可能低于许多其他药物制造工艺的通常产率。但是,应在申请中说明 TDS 提交批次中异常低的产量。 Because of the sensitivity of TDS products to small differences in manufacturing process, a master table comparing the clinical, BE, registration/exhibit, and proposed commercial batches should be included in section 3.2.P.2.3 of the application. For each batch, this table should specify the manufacturing process used (including equipment, and manufacturing scale, and those parameters that could directly or indirectly impact a CQA), and the results of critical in process tests (specifying the test procedure and acceptance criteria), yield, and reconciliation data. The table should also include links to any information referenced from other parts of the submission. It should also clarify whether these batches were packaged to completion at the die cutting and pouching stage 由于 TDS 产品对制造过程中的微小差异很敏感,应在申请书第3.2.P.2.3节中包含一份比较临床、BE、注册/展示和拟议商业批次的主表。对于每个批次,该表应详细说明所使用的制造工艺(包括设备、制造规模以及可能直接或间接影响CQA的参数),以及关键过程中测试的结果(规定测试程序和验收标准)、产量和调节数据。该表还应包括提交文件其他部分引用的任何信息的链接。还应澄清这些批次是否在模切和装袋阶段包装完成 3.Product Characterization Studies/产品特性研究 Because of the uniqueness of the TDS dosage form, specialized developmental studies and eva1uations are recommended to demonstrate full product understanding in both new and abbreviated new drug applications. Several such studies/eva1uations are discussed below. 由于TDS剂型的独特性,建议进行专门的开发研究和评估,以证明在NDA和ANDA应用中对产品的全面理解。以下讨论了几项此类研究/评估。 a.Skin Permeability/皮肤渗透性 Skin permeability is a function of permeant thermodynamic activity and degree of saturation of the drug substance in the TDS. The solubility and degree of saturation of the drug substance in the TDS should be eva1uated, and their impact on the performance of the TDS understood. 皮肤渗透性是渗透热力学活性和TDS中药物饱和程度的函数。应评估药物在TDS中的溶解度和饱和度,并了解其对TDS性能的影响。 b.Crystallization/结晶 Generally, crystallization of the drug substance in the TDS product should be avoided. If crystallization occurs, studies should be conducted to assess its impact on the in vivo performance and adhesion of TDS. 通常,应避免 TDS 产品中API的结晶。如果发生结晶,应进行研究以评估其对TDS体内性能和粘附的影响。 c.Thermodynamic Stability of Drug Substance/原料药的热力学稳定性 To confirm thermodynamic stability of the drug substance, the risk of precipitation or salt formation during manufacturing and storage should be eva1uated. If there is an equilibrium between different salt forms, the kinetics to reach this equilibrium should be thoroughly haracterized. The impact of this equilibrium on TDS performance should be eva1uated with relevant in vitro drug release, permeation, and/or clinical data. 为了确认药物的热力学稳定性,应评估生产和储存过程中沉淀或盐形成的风险。如果不同盐形式之间存在平衡,则应彻底描述达到该平衡的动力学。应使用相关的体外药物释放、渗透和/或临床数据评估这种平衡对TDS性能的影响。 d.Strength/规格 The strength of a transdermal system should be expressed as a rate (e.g., XX mg/day), whereas the strength of a topical system should be expressed as a percent total drug load. For transdermal systems, the strength can be derived from and supported by either PK data or by residual drug analysis performed on used transdermal systems. The first approach involves the derivation of a clearance (Cl) value from absolute bioavailability of the drug and multiplying that by the concentration (Css) at the steady state. The second approach involves the measurement of the amount of drug left in the transdermal systems at the end of the wear period and dividing the “consumed amount” by the wear period. 透皮系统的规格应表示为速率(例如,XXmg/天),而局部系统的强度则应表示为总药物负荷的百分比。对于透皮系统,强度可以由PK数据或对使用过的透皮系统进行的残留药物分析得出并得到支持。第一种方法涉及从药物的绝对生物利用度导出清除率(Cl)值,并将其乘以稳定状态下的浓度(Css)。第二种方法涉及在使用期结束时测量透皮系统中残留的药物量,并将“消耗量”除以使用期。 Although the strength of a topical system is expressed as percent total drug load, a residual drug analysis should still be conducted. 尽管局部系统的强度以总药物负荷百分比表示,但仍应进行残留药物分析。 e.Residual Drug/残留药物 Consistent with FDA guidance for industry Residual Drug in Transdermal and Related Drug Delivery Systems (August 2011), scientific justification sufficient to support the amount of residual drug in a TDS should be included in the pharmaceutical development section of the application. To provide a robust analysis of the residual drug, we recommend the following: 根据FDA关于透皮和相关药物输送系统中残留药物的行业指南(2011年8月),申请的药物开发部分应包含足以支持TDS中残留药物量的科学依据。为了对残留药物进行可靠分析,我们建议如下: 1.Data should be based on analysis of the used TDS and not on a theoretical calculation. 数据应基于对所用TDS的分析,而非理论计算。 2.The amount of drug left on the skin surface should be assessed. Any drug that may have been transferred to packaging or other components of the TDS during storage or use should be accounted for in an attempt to perform a mass balance. 应评估残留在皮肤表面的药物量。在储存或使用过程中可能转移到包装或 TDS 其他成分的任何药物都应考虑在内,以尝试进行质量平衡。 3.Tape or overlays should not be used in studies where the TDS is used to calculate residual drug在TDS用于计算残留药物的研究中,不应使用胶带或覆盖物 4.TDS adhesion assessments should be conducted over the entire period of wear to determine whether the TDS diffusional surface area remains in full contact with the skin during the entire period of the study. 应在整个使用期间进行TDS粘附评估,以确定TDS扩散表面积在整个研究期间是否与皮肤完全接触。 5.A control study should be performed to provide an estimate of drug load, rather than simply using the expressed label claim. This study should include analysis of a minimum of three unused products from the same lot of product used in the study. 应进行对照研究,以提供药物负荷的估计,而不是简单地使用表达的标签要求。这项研究应包括对研究中使用的相同产品的三种未使用产品的分析。 6.Sample storage conditions before and after application of the TDS on the skin should be validated. Photostability and thermal stability of the active ingredient(s) in the TDS should also be considered when selecting the appropriate storage conditions. 应验证将TDS应用于皮肤之前和之后的样品存储条件。在选择合适的储存条件时,还应考虑TDS中活性成分的光稳定性和热稳定性。 7.Appropriately sensitive and valid analytical methods should be used to assay the residual drug content for the purpose of calculating drug depletion and delivery. When estimating the amount of residual drug in the TDS, a drug extraction method with a target extraction efficiency close to 100 percent should be utilized to minimize error应使用适当敏感和有效的分析方法测定残留药物含量,以计算药物消耗和递送。当估计TDS中残留药物的量时,应使用目标提取效率接近100%的药物提取方法,将误差降至最低 f.In Vitro Permeation Testing/体外渗透测试 In vitro permeation testing (IVPT) with the use of excised human skin may be utilized to characterize the rate and extent of transdermal or topical drug delivery, and the study protocols and results should be described in the application. The following factors should be considered during IVPT model development: 使用离体人体皮肤的体外渗透试验(IVPT)可用于表征透皮或局部药物递送的速率和程度,并且在应用中应描述研究方案和结果。IVPT模型开发过程中应考虑以下因素: 相关阅读:《FDA IVPT 测试 工业指南翻译稿》 • Selection of the diffusion apparatus and the operating conditions like stirring rate or flow rate, as well as temperature control to maintain the under-normal-conditions skin surface temperature (32°C ±1°C) 选择扩散装置和操作条件,如搅拌速率或流速,以及温度控制,以保持正常条件下的皮肤表面温度(32°C±1°C) ●Source of the skin, skin storage conditions, choice of skin type (i.e., age range, sex , race, and consistent anatomical region) and the skin preparation technique (e.g., full-thickness, dermatomed, isolated epidermis) 皮肤来源、皮肤储存条件、皮肤类型的选择(即年龄范围、性别、种族和一致的解剖区域)和皮肤制备技术(例如全厚度、病理皮肤、分离表皮) The IVPT protocol should specify the nominal skin thickness and its range, details of the skin barrier integrity test, and any occlusion of the product during the IVPT. Visual observations alone are not sufficient to characterize the barrier integrity of the skin. Acceptable barrier integrity tests may be based on tritiated water permeation, trans-epidermal water loss (TEWL), or electrical impedance/conductance measured across the skin. The test parameters and acceptance criteria used for the skin barrier integrity test should be justified based on relevant literature references or other information IVPT方案应规定标称皮肤厚度及其范围、皮肤屏障完整性测试的细节以及IVPT期间产品的任何遮挡。仅凭视觉观察不足以表征皮肤的屏障完整性。可接受的屏障完整性测试可基于氚化水渗透、经表皮失水(TEWL)或通过皮肤测量的电阻抗/电导。用于皮肤屏障完整性测试的测试参数和验收标准应根据相关文献参考或其他信息进行证明 相关阅读:《IVPT测试中的皮肤研究》 The IVPT protocol should also include details about the receptor solution, system equilibration, procedures for skin mounting and application of the TDS, as well as any measures to secure the TDS on the skin surface to prevent lifting. We recommend that an antimicrobial agent be included in the receptor solution (e.g., ~0.1 percent sodium azide or ~0.01 percent gentamicin sulfate). IVPT方案还应包括受体溶液、系统平衡、皮肤安装程序和TDS应用程序的详细信息,以及将TDS固定在皮肤表面以防止移动的任何措施。我们建议在受体溶液中加入抗菌剂(例如,约0.1%的叠氮化钠或约0.01%的硫酸庆大霉素)。 The IVPT study report should include dose duration, sampling duration, sampling time points, concentration of samples, concentration of the antimicrobial component, and the empirical stability (at relevant temperatures) and solubility of the active ingredient in the receptor solution. The study report should also include the number of individuals whose skin was eva1uated (i.e., skin donors) and the number of replicate skin sections per donor per treatment group IVPT研究报告应包括剂量持续时间、取样持续时间、取样时间点、样品浓度、抗菌成分浓度以及活性成分在受体溶液中的经验稳定性(在相关温度下)和溶解度。研究报告还应包括接受皮肤评估的个体数量(即,皮肤供体)以及每个治疗组每个供体的重复皮肤切片数量。 All treatment groups compared in an IVPT study should be dosed on the skin samples from the same set of donors, with the same number of replicates per donor per treatment group. These treatment groups should also use the skin samples from the same anatomical site from all donors, unless varying these parameters is essential to the design of the study and the eva1uation of the TDS. The study report should include the equilibrated skin surface temperature prior to dose application, and the ambient temperature and relative humidity in the laboratory, as well as the extent of qualification of the sample analytical methods (e.g., HPLC) IVPT研究中比较的所有治疗组应在同一组供体的皮肤样本上给药,每个治疗组每个供体的重复次数相同。这些治疗组还应使用来自所有供体的相同解剖部位的皮肤样本,除非改变这些参数对研究设计和TDS评估至关重要。研究报告应包括剂量应用前的平衡皮肤表面温度、实验室的环境温度和相对湿度,以及样品分析方法(如HPLC)的合格程度 g.Extractable and Leachable Testing/可提取且可浸出的测试 All TDS should be eva1uated for potential compounds that could be transferred from the product to the patient. This eva1uation should include assessments of extractables and leachables, consistent with USP <1663>and<1664> 应评估所有TDS中可能从产品转移至患者的潜在化合物。该评估应包括与USP<1663>和<1664>一致的可提取物和可浸出物的评估 As defined in United States Pharmacopeia (USP)21 General Chapter Assessment of Extractables Associated with Pharmaceutical Packaging/Delivery Systems, “extractables are organic and inorganic chemical entities that are released from a pharmaceutical packaging/ delivery system, packaging component, or packaging material of construction and into an extraction solvent under laboratory conditions.” The extraction conditions should “accelerate or exaggerate the normal conditions of storage and use for a packaged dosage form.” 如《美国药典》(USP)第21章“与药物包装/输送系统相关的可提取物评估”中所定义的,“可提取物是在实验室条件下从药物包装/运输系统、包装组件或包装材料中释放并进入提取溶剂的有机和无机化学物质。提取条件应“加速或放大包装剂型的正常储存和使用条件” As defined in USP General Chapter <1664> Assessment of Drug Product Leachables Associated with Pharmaceutical Packaging/Delivery Systems, “leachables are foreign organic and inorganic entities that are present in a packaged drug product because they have leached into the packaged drug product from a packaging/delivery system, packaging component, or packaging material of construction under normal conditions of storage and use or during accelerated drug product stability studies.” 如USP通用章节<1664>与药物包装/输送系统相关的药品浸出物评估中所定义,“可浸出物是指包装药品中存在的外来有机和无机物质,因为它们在正常储存和使用条件下或在加速药品稳定性研究期间从包装/输送系统、包装组件或包装材料中浸出到包装药品中。” In the context of this guidance, extractable impurities are chemical entities that can be drawn out of the backing membrane, release liner, pouching material, printed ink, internal membranes, and components other than the drug substance and adhesive matrix by a solvent system. 在本指南的上下文中,可提取杂质是可通过溶剂系统从背衬膜、释放衬垫、袋材料、印刷油墨、内膜和除药物和粘合剂基质以外的成分中抽出的化学物质。 Additionally, an extraction study can detect compounds introduced into the TDS from the manufacturing process, which can impact the final impurity profile of the TDS product. In the context of this guidance, leachables are chemical entities present in a packaged TDS because they leached into the adhesive matrix (or where applicable, reservoir) under normal conditions of storage or during accelerated stability studies. These compounds may transfer from the adhesive matrix (or reservoir) to the patient during use. 此外,提取研究可以检测从制造过程中引入TDS的化合物,这会影响TDS产品的最终杂质分布。在本指南中,可浸出物是包装TDS中存在的化学物质,因为它们在正常储存条件下或在加速稳定性研究期间浸出到粘合剂基质(或适用情况下的储层)中。在使用过程中,这些化合物可从粘合剂基质(或贮层)转移至患者。 Extractable studies are used to inform the leachable study design. The leachable data should be correlated, if possible, with the extractables profile(s) determined under the various control extraction study conditions. Both extractable and leachable studies should have adequate sensitivity to detect compounds potentially released at a level associated with patient exposure when a product is used at the maximum daily dose (e.g., 1.5 mcg/day for standard mutagenic compounds in a chronic-use drug product22 ), unless otherwise justified. For some products, the maximum daily dose may require applying more than one TDS. 可提取研究用于告知可浸出研究设计。如果可能的话,在不同的对照浸出研究条件下确定浸出物的分布。可提取和可浸出研究应具有足够的灵敏度,以检测当产品以最大日剂量使用时(例如,长期使用药物产品中的标准致突变化合物为1.5 mcg/天),可能释放的化合物,除非另有证明。对于某些产品,最大每日剂量可能需要应用一种以上的TDS。 Adhesive impurities such as residual monomers, initiator byproducts, and aldehydes are not considered extractables or leachables because these impurities are present at peak concentrations before product manufacture. Control of adhesive impurities is discussed elsewhere in this guidance (see section IV. INFORMATION TO BE SUBMITTED IN AN APPLICATION, C. Control of TDS Product). However, the leachable studies discussed below may be leveraged to justify adhesive impurity limits or as part of the toxicological risk assessment for adhesive impurities because a leachable study is performed on the proposed commercial product. 粘合剂杂质,如残留单体、引发剂副产物和醛类,不被视为可提取或可浸出物,因为这些杂质在产品制造前以峰值浓度存在。本指南其他地方对粘合剂杂质的控制进行了讨论(见第四节C申请中提交的信息TDS产品的控制)。然而,以下讨论的可浸出性研究可用于证明粘合剂杂质限值,或作为粘合剂杂质毒理学风险评估的一部分,因为对拟议的商业产品进行了可浸出研究。 To aid in the extractable and leachable analyses described below, applicants should contact raw material suppliers to identify potential extractables of toxicological concern, such as residual monomers from backing materials. 为了帮助进行下文所述的可提取和可浸出分析,申请人应联系原材料供应商,以确定潜在的毒理学问题可提取物,例如背衬材料中的残留单体。 lExtractable Studies Extractable studies should be conducted early in the pharmaceutical development process to understand the potential leachables from components of the proposed commercial TDS. These studies should be conducted on components such as backing membrane, release liner, rate controlling or other internal membranes, ink and pouching. The testing components should be extracted in a variety of solvents with a range of polarities under vigorous laboratory extraction conditions to maximize the levels of extractables and identify as many potential leachables as possible. One of the extraction solvents used in the extractable studies should include the solvent of the proposed commercial adhesive(s) platform or the known residual solvents for the finished TDS. The choices of solvents used should be justified 可提取性研究 应在药物开发过程早期进行可提取性研究,以了解拟议商业TDS组分的潜在浸出物。这些研究应在背衬膜、释放衬垫、速率控制或其他内部膜、油墨和袋等组件上进行。测试组分应在各种极性不同的溶剂中,在剧烈的实验提取条件下提取,以最大限度地提高可提取物的水平,并尽可能多地确定潜在的可浸出物。可提取性研究中使用的提取溶剂之一应包括拟定商业粘合剂平台的溶剂或成品TDS的已知残留溶剂。所用溶剂的选择应合理 可浸出研究 可浸出研究的条件应尽可能接近皮肤的“最坏情况”临床条件(例如,剧烈运动期间出汗)。应为研究选择合理的溶剂/溶液(如盐浓度)、温度、搅拌水平、暴露于溶剂的时间等实验条件。在研究期间,应将隔离衬垫从系统中移除,以使粘合剂层充分暴露于生物相关溶剂。申请人应进行多时间点可浸出物分析(例如,0、6、12、24个月),以提供全面的可浸出物概况,并确定可浸出物的任何趋势,因为这些数据可能影响产品的保质期。提交申请时,应提交在加速和长期条件下储存至少6个月的多批次样品的可浸出研究数据。我们建议对三种不同的TDS层压板进行可浸出研究,并进行稳定性测试。 h.Assessing the Effects of Heat Heat from external sources such as a heating blanket, and potentially from a rise in internal body temperature due to strenuous exercise or fever, may affect the rate of drug release from the TDS and the absorption of drug into and through the skin. We recommend that applicants study the impact of an elevated TDS/skin surface temperature on the delivery profile of TDS relative to its delivery profile at a normal TDS/skin surface temperature. h.评估热效应的影响 来自外部来源(如加热毯)的热量,以及可能由于剧烈运动或发烧导致的体内温度升高,可能会影响TDS中药物释放的速率以及药物进入和通过皮肤的吸收。我们建议申请人研究相对于正常TDS/皮肤表面温度下的TDS释放曲线,升高TDS/皮肤表面温度对TDS释放曲线的影响。 For a TDS product to be submitted in an NDA, we recommend that the heat effect studies be conducted as part of a clinical study using the proposed commercial product. In designing the heat effect studies, critical factors such as appropriate elevated test temperature(s), heat exposure onset time(s), duration(s), and cycles (if any), as well as mechanisms of heat exposure (e.g., heating lamp, heating pad, etc.) should be identified 对于在NDA中提交的TDS产品,我们建议将热效应研究作为临床研究的一部分,使用拟议的商业产品进行。在设计热效应研究时,应确定关键因素,如适当升高的试验温度、热暴露开始时间、持续时间和周期(如有),以及热暴露机制(如加热灯、加热垫等) For a TDS product to be submitted in an ANDA, the applicant should eva1uate whether the test TDS, used under elevated temperature conditions, increases drug delivery compared to the reference (R) TDS. The ANDA applicant should provide the results of an IVPT study comparing the drug delivery characteristics for the test TDS and the R TDS at normal and elevated temperatures using skin from multiple individuals (donors), with multiple replicate diffusion cells eva1uated per donor, per treatment (test versus R), and per temperature condition. An IVPT study with a sufficient number of donors and replicates per donor per treatment per temperature condition is recommended to obtain meaningful data. A study with fewer than four donors and four replicates per donor per treatment per temperature may be difficult to interpret. 对于将在ANDA中提交的TDS产品,申请人应评估在高温条件下使用的测试TDS是否比参考(R)TDS增加药物递送。ANDA申请人应提供一项IVPT研究的结果,该研究使用来自多个个体(供体)的皮肤,在正常和升高温度下比较(T)TDS和(R)TDS的药物递送特性,每个供体、每个治疗(T与R)和每个温度条件下评估多个复制扩散池。建议进行IVPT研究,以获得有意义的数据,该研究具有足够数量的供体,并在每个温度条件下对每个供体进行重复治疗。如果一项研究在每种温度下,每种处理的供体少于四个,每个供体有四个重复,这可能很难对结果进行解释。 We recommend a parallel eva1uation and comparison of the test and R TDS under the following baseline and elevated temperature conditions: 我们建议在以下基础和高温条件下对试验和R TDS进行平行评估和比较: 1.BASELINE: Both the test and R products should be maintained at a TDS/skin surface temperature of 32 ±1°C for the entire study duration. 基础:在整个研究期间,T和R产品的TDS/皮肤表面温度应保持在32±1°C。 2.ELEVATED TEMPERATURE: Both the test and R products should be maintained at a TDS/skin surface temperature of 32 ±1°C until a specified time, approximately when the peak flux is observed, and then maintained at a TDS/skin surface  temperature of 42 ±2°C for a period thereafter, which may be the remainder of the study duration升高的温度:T和R产品应保持在32±1°C的TDS/皮肤表面温度,直到大约观察到峰值通量时的指定时间,然后在剩余持续研究时间段保持在42±2°C的TDS/皮肤表面温度 It should not be assumed that a set temperature for a circulating water bath will provide the target temperature at the TDS/skin surface. The TDS/skin surface temperature should be directly measured using an infrared thermometer or other temperature probe. The study duration for a 7-day wear TDS need not encompass the entire labeled duration of wear. It may be adequate to perform an IVPT study for a 48 or 72 hour duration, if that duration is sufficient to reach the peak drug delivery rate under baseline conditions. Alternatively, an applicant may justify eva1uating other conditions or scenarios of exposure to elevated temperatures that represent the worst-case scenario for a given TDS product or indicated patient population. 不应假设循环水浴的设定温度可以提供TDS/皮肤表面的目标温度。应使用红外温度计或其他温度探头直接测量TDS/皮肤表面温度。7天使用TDS的研究持续时间不需要包括整个标示的使用持续时间。如果IVPT研究的持续时间足以达到基础条件下的峰值药物输送率,则进行48或72小时的IVPT研究可能就足够。或者,申请人可以评估证明暴露于高温的其他条件或情景是合理的,这些条件或情景代表给定TDS产品或指定患者人群的最坏情况。 i.Microscopic Matrix eva1uation Due to complexities of many TDS formulations, adhesive matrices often do not form true solutions, rather they manifest as dispersions. If rearrangements of the dispersed-like system occur over time within the matrix, they can possibly lead to lack of adhesion or changes in drug delivery and release. As such, it is important to have a good understanding of the TDS formulation, the way the drug substance and excipients are dispersed within the adhesive matrix, and the tendency of the matrix to change over time from product release through its expiry period. Therefore, it is informative to assess surface and cross-sectional changes in the TDS matrix throughout the shelf life of the developmental batches using high-powered microscopy, elemental mapping, or other appropriate tools. These tools may not be appropriate for every TDS; applicants should provide a scientific justification for the tools used. These assessments  will help achieve comprehensive understanding of product and process, mitigate quality-related risks, and assure that the TDS meets the requisite quality attributes through its expiry period i. 微观基质评价 由于许多TDS配方的复杂性,粘合剂基质通常不会形成真正的溶液,而是表现为分散体。如果分散样系统在基质中随着时间的推移发生重排,它们可能导致缺乏粘附或药物递送和释放的变化。因此,需要充分了解TDS配方、药物和赋形剂在粘合剂基质中的分散方式,以及有效期内,随着时间变化基质从产品中释放的趋势。因此,使用高性能显微镜、元素图谱或其他适当的工具评估TDS基质在整个开发批次保质期内的表面和横截面变化是有益的。这些工具可能不适用于所有TDS;申请人应为所使用的工具提供科学依据。这些评估将有助于全面了解产品和过程,降低质量相关风险,并确保TDS在其到期期间满足必要的质量属性 4.Proposed Manufacturing Changes Scale-up proposals and other process changes may be proposed in an original NDA or ANDA, but the level of additional information needed to support these changes will generally be commensurate with the risk of the change to adversely impact product quality. In general, changes to TDS after the conduct of pivotal clinical studies should be avoided when possible because of the sensitivity of TDS to small changes in formulation and manufacturing process. 4.拟议的生产变更 原NDA或ANDA中可能会提出比例放大建议和其他流程变更,但支持这些变更所需的额外信息水平通常与变更对产品质量产生不利影响的风险相当。一般来说,在进行关键临床研究后,应尽可能避免TDS的变化,因为TDS对配方和制造过程中的微小变化很敏感。 Low-risk changes may be adequately supported with updated master batch records and batch formulas. Examples include scale-up of solvent-based and aqueous mixtures within a factor of 10 using equipment of the same design and operating principles, or proposing a change to converting and pouching equipment of the same design and operating principle 可通过更新主批次记录和批次方案得到充分支持低风险变更。例如,使用相同设计和工作原理的设备,将溶剂基和水性混合物的规模扩大10倍,或建议对相同设计和工作原理的转换和装袋设备进行更改 Moderate-risk changes may warrant additional developmental studies and stability data on commercial scale batches to demonstrate that they will not result in an adverse impact on the quality of the product. Examples of such changes may include scale-up of hot-melt mixtures within a factor of 10, scale-up of screw-based mixing processes, and changes to coating/drying/laminating equipment of the same design and operating principle 中等风险变化可能需要对商业规模批次进行额外的开发研究和稳定性数据,以证明它们不会对产品质量产生不利影响。这种变化的例子可能包括将热熔混合物的比例提高到10倍以内,将螺杆混合工艺的比例提高,以及改变具有相同设计和操作原理的涂层/干燥/层压设备 Changes that pose a high risk to quality may warrant additional in vivo studies. An example is changing the manufacturing process to incorporate equipment of a different design and operating principle. 对质量构成高风险的变化可能需要额外的体内研究。一个例子是改变制造工艺,以采用不同设计和操作原理的设备。 B.Manufacture As described in ICH M4Q, section 3.2.P.3 of the application should contain information about where and how the TDS product will be manufactured. The batch formula and a descr1ption of the manufacturing process and process controls should be provided. A detailed schematic diagram of the proposed production process, including descr1ptions of the equipment, operating conditions, and process controls, should also be provided. B.生产 如ICH M4Q中所述,应用程序的第3.2.P.3节应包含关于TDS产品将在何处以及如何制造的信息。应提供批次配方以及制造工艺和工艺控制的说明。还应提供拟定生产工艺的详细示意图,包括设备、操作条件和工艺控制的说明。 During process development, the applicant should identify process variables that have a potential to impact TDS product CQAs. These process development studies inform commercial process qualification and continued process verification later in the product life cycle. 在工艺开发过程中,申请人应确定可能影响TDS产品CQA的工艺变量。这些工艺开发研究为商业工艺鉴定和产品生命周期后期的持续工艺验证提供了信息。 Typical TDS manufacturing steps/unit operations are listed below (a non-exhaustive list). For processes that incorporate these steps, the applicant should describe how each operation and associated controls were developed, addressing the considerations below, specifically, the CQAs that may be impacted by the operation, and the relevant process parameters and material attributes that may impact the output of each operation: 下面列出了典型的TDS制造步骤/装置操作(非详尽列表)。对于包含这些步骤的过程,申请人应说明每个操作和相关控制是如何制定的,并说明以下注意事项,特别是可能受操作影响的CQA,以及可能影响每个操作输出的相关工艺参数和材料属性: ●Mixing: Mixing operations produce bulk mixtures for the coating step. Mixing can impact CQAs such as assay, stability of drug substance and/or excipients, content uniformity, microscopic appearance, and physical properties of the adhesive. The control strategy should address the impact of equipment design, order of material addition, and process parameters (such as mixing speeds, mixing times, temperatures, redispersion or recirculation conditions, and deaeration conditions) on CQAs, and should be justified, as necessary, based on development studies. CMAs that can impact mixing include drug substance particle size, polymorphic form, raw material rheological attributes, and percent solids for materials supplied in solvent-based mixtures. 混合:混合操作产生用于涂层步骤的散装混合物。混合可影响CQA,如含量测定、原料药和/或赋形剂的稳定性、含量均匀性、微观形态和粘合剂的物理性质。控制策略应解决设备设计、物料添加顺序和工艺参数(如混合速度、混合时间、温度、再分散或再循环条件以及脱气条件)对CQA的影响,并应根据开发研究在必要时予以证明。能够影响混合的cma包括原料药粒度、多态形态、原料流变特性和溶剂型混合物中供应的材料的固体百分比。。 ●Coating, drying, and lamination: Coating is the application of a mixture to a substrate.  Depending on the equipment used, coating can impact CQAs such as content uniformity and microscopic appearance. Though CPPs are equipment dependent,  firms should demonstrate that the control strategy (e.g., process parameters to be controlled) is adequate to ensure content uniformity and microscopic appearance for the full duration of the coating operation. CMAs that can impact coating include the rheology of the bulk mixture and within-roll uniformity of the substrate to be coated 涂布、干燥和层压:涂布是将混合物涂覆到基材上。根据使用的设备,涂层可能会影响CQA,如含量均匀性和微观外观。尽管CPP依赖于设备,但企业应证明控制策略(例如,要控制的工艺参数)足以确保涂布操作整个过程中的含量均匀性和微观形态。可能影响涂层的CMA包括散装混合物的流变性和待涂层基材的辊内均匀性 Drying involves the removal of solvent from the mixture following the coating process. This process step can impact CQAs such as assay, permeation enhancer content, antioxidant content, water content (for hydrogels), content uniformity, microscopic appearance, drug release, product stability, residual solvents, residual adhesive impurities, and physical properties of the adhesive matrix. Therefore, CPPs for drying that may need to be considered during process development include line speed, the pump or screw speed, zone temperatures, air flow rates, temperature of the drying air, and humidity of the drying air. Process development should also consider the CMAs that can impact drying such as solvent and adhesive impurity content in the bulk mixture. Applicants should also provide data to justify any drug substance overage or excipient excess that may be needed to compensate for any evaporation during drying 干燥包括在涂布过程之后从混合物中除去溶剂。该工艺步骤可影响CQA,如测定、渗透促进剂含量、抗氧化剂含量、水含量(用于水凝胶)、含量均匀性、微观外观、药物释放、产品稳定性、残留溶剂、残留粘合剂杂质和粘合剂基质的物理性质。因此,在工艺开发过程中可能需要考虑用于干燥CPP的包括管线速度、泵或螺杆速度、区域温度、空气流速、干燥空气的温度和干燥空气的湿度。工艺开发还应考虑可能影响干燥的CMA,如散装混合物中的溶剂和粘合剂杂质含量。申请人还应提供数据,证明药物和辅料可能需要过量,以补偿干燥过程中的蒸发损失。 Lamination involves the combining of multiple layers of a given transdermal system design into a single common laminate. Applicants should provide development data for corona treatments if such a process is used to bond the adhesive to a backing film or rate-controlling membrane 层压包括将给定透皮系统设计的多个层组合成单个普通层压。如果使用电晕处理工艺将胶粘剂粘合到背膜或速率控制膜上,则申请人应提供电晕处理的开发数据。 ØSlitting and Printing: The bulk product is typically slit longitudinally into narrower rolls of laminate for further processing. Slitting and printing are typically low risk steps; however, if certain aspects of the printing processes, e.g., excessive penetration depth or heat input, can adversely affect product quality, then printing processes should be characterized and controlled. 分切和印刷:通常将散装产品纵向切成较窄的层压板卷,以便进一步加工。切片和印刷是典型的低风险步骤;然而,如果印刷过程的某些方面,例如过度的渗透深度或热量输入,会对产品质量产生不利影响,那么应对印刷工艺进行表征和控制。 ØConverting and pouching: Converting and pouching typically involve cutting a  continuous laminate into individual units and sealing the unit in a heat-sealed pouch.  CQAs affected by these processes include usability of the product (e.g., the ability to remove a release liner) and pouch integrity. Common CPPs for these steps include heat sealing temperatures and dwell times. 转换和封装:转换和封装通常涉及将连续层压材料切割成单个单元,并将该单元密封在热密封袋中。受这些过程影响的CQA包括产品的可用性(例如,移除释放衬垫的能力)和袋的完整性。这些步骤的常见CPP包括热封温度和停留时间。 ●Curing: Some TDS have processing steps to complete a curing reaction after drying or pouching. Curing time and curing conditions are common CPPs for this step. Curing should be completed before batch release testing if curing could impact test results. 固化:有些TDS在干燥或装袋后有加工步骤来完成固化反应。固化时间和固化条件是该步骤的常见CPPs。如果固化可能影响测试结果,则应在批放行测试前完成固化。 ●Hold times: Hold times must be defined and justified for in-process materials held between unit operations (21 CFR part 211.111). Applicants should use a risk-based approach to determine which CQAs to monitor during hold time studies. 保持时间:必须定义和证明在单元操作之间保留的过程中材料的保留时间(21 CFR第211.111部分)。申请人应使用基于风险的方法来确定在保持时间研究期间要监控哪些CQA。 ●Other considerations: Tubing and other product-contact equipment must be qualified as non-reactive, non-additive, and non-absorptive (21 CFR part 211.65(a)). The selection of the tubing and certain product-contacting equipment should be risk based, i.e., dependent on the duration of contact, process temperature, solvent system,  material considerations, clearance of leachables during manufacturing, and clinical use considerations. 其他注意事项:管道和其他产品接触设备必须经过非反应性、非添加剂和非吸收性(21 CFR第211.65(a)部分)的认证。管道和某些产品接触设备的选择应基于风险,即取决于接触持续时间、工艺温度、溶剂系统、材料考虑因素、制造过程中可浸出物的清除以及临床使用考虑因素。 In-process controls (IPCs) for TDS are an integral part of the control strategy. The descr1ption of the proposed IPCs should address the following: TDS的过程中控制(IPC)是控制策略的一个组成部分。拟议IPC方案的说明应包括以下内容: ●At the mixing stage, IPCs can provide assurance of assay, viscosity, uniformity, and pH for aqueous mixtures. If multiple samples are taken from a dispersed mixture, applicants should specify the mean, range for individual samples, and percent relative standard deviation. 在混合阶段,IPC可以保证水性混合物的含量、粘度、均匀性和pH值。如果从分散的混合物中提取多个样品,申请人应指定平均值、单个样品的范围和相对标准偏差百分比。 ●IPCs for coating, drying, and lamination can provide assurance of uniformity across the laminate and throughout the run. For example, measurements for film appearance, coat weight, and/or a test for residual solvents may be applicable IPCs for coating and drying. Film appearance measurements that allow detection and rejection of defects affecting continuity of an adhesive laminate (e.g., streaks) should be described in the application. Additionally, for films that are dispersions at the microscopic scale (e.g.,  acrylic adhesive dispersed in silicone, povidone dispersed in silicone, or solid drug  substance dispersed in adhesive), applicants should describe the IPCs established to monitor uniformity throughout a coating run in the application. Samples for testing coat weight and uniformity should be representative of the full length and width of a laminate. Alternatively, these attributes can be monitored continuously (e.g., by the use of in-line coating measurement tools). In cases where the upstream controls can be used to confirm certain finished TDS specifications, such as residual solvents and  residual adhesive impurities, IPC testing can be used in lieu of release testing for these attributes. 用于涂布、干燥和层压的IPC可确保整个层压板和整个运行过程中的均匀性。例如,薄膜外观、涂层质量的测量和/或残留溶剂的测试可能适用于涂层和干燥的IPC。应在申请中描述允许检测和排除影响粘合剂层压板连续性的缺陷(例如条纹)的薄膜外观测量。此外,对于在微观尺度上为分散体的薄膜(例如,分散在硅酮中的丙烯酸粘合剂,分散在硅氧烷中的聚维酮,或分散在粘合剂中的固体药物),申请人应描述为在应用中监控整个涂层运行的均匀性而建立的IPC。用于测试涂层质量和均匀性的样品应代表层压板的整个长度和宽度。或者,可以连续监测这些属性(例如,通过使用在线涂层测量工具)。如果上游控制可用于确认某些成品TDS规范,如残留溶剂和残留粘合剂杂质,则可使用IPC测试代替这些属性的释放测试。 ●For converting and pouching, IPCs can provide assurance of pouch integrity, product placement within the pouch, and product appearance (e.g., adequacy of the printed label, die-cuts, and kiss-cuts). An automated system can perform in-process checks for product appearance in lieu of human operators if the automated system is demonstrated to be suitable for the intended task(s). 对于转换和装袋,IPC可以确保袋的完整性、袋内的产品放置以及产品外观(例如,印刷标签、模切和吻切的充分性)。如果证明自动化系统适用于预期任务,自动化系统可以代替人工操作员对产品外观进行过程中检查。 C.Control of TDS Product Section 3.2.P.5 of the application should contain the following information on control of the TDS product: C.TDS产品控制 申请书第3.2.P.5节应包含以下关于TDS产品控制的信息: ●Specification规格 ●Analytical procedures分析程序 ●Validation of analytical procedures分析程序的验证 ●ØCharacterization of impurities杂质的表征 ●Batch analyses批次分析 ●Justification for the proposed specification拟定规范的理由 Typical CQAs included in TDS specification: TDS规范中包含的典型CQA ●Descr1ption说明 ●Identification鉴别 ●Assay含量测定 ●Impurities and degradation products杂质和降解产物 ●Uniformity of dosage units含量均匀度 ●Permeation enhancer content, when applicable促渗剂含量(如适用) ●Adhesion粘合剂 ●Release liner peel释放衬垫剥离 ●Tack黏着力 ●Shear剪切力 ●Cold flow冷流 ●In vitro drug release体外药物释放实验 ●Drug substance crystal presence药物晶态 ●Pouch integrity包装完整性 ●Microbial limits, when applicable 微生物限度(如适用) ●Moisture content, when applicable水分测定(如适用) ●Residual solvents残留溶剂 The proposed analytical procedures should be d0cumented in sufficient detail that they can be reviewed and reproduced in FDA laboratories. In some cases, if upstream controls can be used to confirm that a batch of product meets a CQA listed on the specification, that attribute may not need to be tested at release for every batch, but should be indicated as such on the specification. Applicants proposing a control strategy using such an approach should provide justification. 建议的分析程序应详细记录,以便在FDA实验室进行审查和复制。在某些情况下,如果上游控制可用于确认一批产品符合规范中列出的CQA,则该属性可能不需要在每批产品放行时进行测试,但应在规范中注明。申请人提出使用这种方法的控制策略时应提供理由。 Some of the methods and criteria associated with CQAs typical for TDS are described below. 一些与CQAs相关的TDS典型方法和标准如下所述。 a.Adhesive Impurities Adhesives may contain residual monomers, initiator byproducts, aldehydes, etc. The safety of these compounds should be assessed, as some of these compounds are classified as neurotoxic (e.g., tetramethylsuccinonitrile) or mutagenic (e.g., crotonoaldehyde). Manufacturers are encouraged to contact the raw material suppliers to discuss the selected adhesive raw material  and all potential impurities, as some impurities may not be reported on the certificates of analysis provided by the supplier. Applicants should discuss the potential impurities arising from the raw material in the application. A control strategy for any impurity of toxicological relevance should be established and justified. The control strategy may include testing at the raw material stage,  demonstrating that the manufacturing process is capable of consistently removing the impurities of concern, testing of the final laminate, or a combination of the above. a.粘合剂杂质 粘合剂可能含有残余单体、引发剂副产物、醛等。应评估这些化合物的安全性,因为其中一些化合物被分类为具有神经毒性(例如,四甲基丁二腈)或致突变性(例如巴豆醛)。鼓励制造商与原材料供应商联系,讨论所选粘合剂原材料和所有潜在杂质,因为供应商提供的分析证书中可能未报告某些杂质。申请人应在申请中讨论原材料可能产生的杂质。应制定并证明与毒理学相关的任何杂质的控制策略。控制策略可包括在原材料阶段进行测试,证明制造过程能够持续去除相关杂质,测试最终层压板,或以上各项的组合。 To support a proposed control strategy based on the capability of the manufacturing process to consistently remove any impurities of concern, applicants should provide data to demonstrate a reduction in the level of the impurity in the final laminate (or finished product) compared to the level in the same batch of raw material.These data are necessary to quantitatively demonstrate effectiveness of the manufacturing process in removing the impurity and to establish controls for adhesive impurities based on levels in the raw material rather than on the final product. 为了支持基于制造工艺持续去除任何相关杂质的能力的拟议控制策略,申请人应提供数据,以证明最终层压板(或成品)中的杂质水平与同一批原材料中的水平相比有所降低。这些数据对于定量证明制造工艺去除杂质的有效性以及根据原材料中的含量而不是最终产品中的含量建立粘合剂杂质控制是必要的。 Applicants may consider leveraging the leachable study discussed in the pharmaceutical development section of this guidance by testing adhesive impurities in the leachate. The leachable information can be used to provide toxicological justification for impurity limits or the information can be included as part of the toxicological risk assessment. 申请人可考虑利用本指南药物开发部分中讨论的可浸出性研究,测试渗滤液中的粘合剂杂质。可浸出信息可用于为杂质限值提供毒理学依据,或将信息作为毒理学风险评估的一部分。 b.Uniformity of Dosage Units TDS specifications should include a test and acceptance criterion for content uniformity for the dosage units. If the finished TDS is designed to be cut by the user, uniformity should also be demonstrated among pieces cut from a single unit. b.含量均匀度 TDS规范应包括剂量单位含量均匀性的测试和验收标准。如果最终TDS设计为由用户切割,则还应证明从单个单元切割的工件之间的一致性。 c.Permeation Enhancer Content Products that utilize permeation enhancers to establish or maintain drug delivery should include a test and acceptance criterion for permeation enhancers at release and throughout stability. An acceptance criterion that is wider than the typical range for a particular permeation enhancer may require in vivo justification in the absence of an in vitro in vivo correlation. C.促渗剂含量 使用渗透促进剂建立或维持药物递送的产品应包括促渗剂在释放和整个稳定性试验时的测试和验收标准。在缺乏体外-体内相关性的情况下,比特定促渗剂的典型范围更宽的接受标准可能需要体内研究证明。 d.Adhesion Testing (Peel Adhesion, Release Liner Peel, Tack, and Shear Tests) Using currently available methods, in vitro adhesion testing does not correlate to in vivo adhesion, but in vitro adhesion testing can be useful for quality control (QC) purposes. In vitro adhesion testing should include peel adhesion, release liner removal, tack, and shear (dynamic or static). There are multiple methods and different experimental parameters for each of the tests. D.黏附试验(剥离粘附、释放衬垫剥离、粘性和剪切试验) 使用当前可用的方法,体外粘附测试与体内粘附无关,但体外黏附测试可用于质量控制(QC)目的。体外黏附测试应包括剥离黏附、剥离衬垫移除、粘性和剪切(动态或静态)。每个测试有多种方法和不同的实验参数。 The peel adhesion test measures the force required to remove (peel away) a TDS that has been applied to a standard test panel (e.g., polished stainless steel). The measurement of peel adhesion is influenced by the test parameters such as dwell time, substrate (e.g., stainless steel, high density polyethylene (HDPE)), peel angle, and peel speed. 剥离附着力测试测量去除(剥离)已应用于标准测试面板(例如抛光不锈钢)的TDS所需的力。剥离附着力的测量受测试参数的影响,例如停留时间、基材(例如不锈钢、高密度聚乙烯(HDPE))、剥离角和剥离速度。 A release liner peel test measures the force required to separate a TDS from its release liner. The measurement of release liner peel is influenced by experimental parameters such as peel angle and peel speed. 释放衬垫剥离测试用于测量将TDS与释放衬套分离所需的力。释放衬垫剥离的测量受剥离角和剥离速度等实验参数的影响。 The probe tack test measures the force required to separate the test probe from the adhesive of the TDS. Tack measurement is influenced by the test parameters such as the contact area, the contact pressure, the time of contact (or dwell time), and rate of separation. 探针粘性测试测量将测试探针与TDS粘合剂分离所需的力。粘性测量受测试参数的影响,如接触面积、接触压力、接触时间(或停留时间)和分离速度。 There are two categories of shear testing, namely dynamic and static. In the dynamic test, the TDS is pulled from a standard test panel (e.g., polished stainless steel). Dwell time, speed, type of test panel, mode of failure, and sample size are the typical test parameters reported for the dynamic shear test. In the static shear test, the TDS sample is applied to a test panel that is at an angle 2° from the vertical, and the sample is subjected to a shearing force by a means of a givenweight (e.g., 1000 g) suspended from the TDS; the time required to detach a standard area of the TDS from a stainless steel test panel under a standard load is measured. Dwell time, weight used, type of test panel, mode of failure, and sample size are the typical test parameters reported for the static shear test. The time taken for the TDS sample to detach from the test panel is also reported 剪切试验有两类,即动态和静态。在动态测试中,TDS从标准测试面板(例如,抛光不锈钢)中拉出。停留时间、速度、试验板类型、失效模式和样本大小是动态剪切试验报告的典型试验参数。在静态剪切试验中,将TDS样品施加到与垂直方向成2°角的试验板上,并通过悬浮在TDS上的给定质量(例如1000 g)对样品施加剪切力;测量在标准负载下从不锈钢测试面板上分离TDS标准区域所需的时间。静态剪切试验报告的典型试验参数包括停留时间、所用质量、试验板类型、破坏模式和样品尺寸。也需报告TDS样品从测试面板上分离所需的时间 E.冷流 冷流是指粘合剂基质在背衬膜周边或通过剥离衬垫缝隙的流动或渗出。TDS、隔离衬垫、袋或一次性膜(有时称为滑动片或保护膜,例如背衬上的膜和隔离衬垫上的膜)上可能存在冷流。尽管评估冷流的定量方法可以提供有意义的测量,但它可能无法描述从袋中去除TDS或从TDS中去除保护膜的困难。TDS最准确的冷流评估可能来自特定产品的定量和定性方法的组合。 The test methods should be discriminating and scientifically justified. Manufacturers should propose product-specific acceptance criteria with justification supported by product development research. 测试方法应具有鉴别性和科学合理性。制造商应提出产品特定的验收标准,并提供产品开发研究支持的理由。 f.In vitro Drug Release USP General Chapter describes the apparatuses to use for in vitro release testing and the acceptance criteria for each apparatus; however, method development and validation is not addressed. General recommendations for in vitro release testing of TDS are described below along with considerations for method design and validation F.体外药物释放 USP通则章节描述了用于体外释放测试的仪器以及每个仪器的验收标准;然而,方法开发和验证并未涉及。TDS体外释放试验的一般建议以及方法设计和验证的注意事项如下所述 In vitro drug release testing of TDS products is typically performed using specific, qualified apparatus such as: Paddle over Disk (Apparatus 5), Cylinder (Apparatus 6), or Reciprocating Holder (Apparatus 7). TDS产品的体外药物释放测试通常使用特定合格的设备进行,例如:桨碟法(装置5)、转筒法(装置6)或往复支架法(装置7)。 (图片提供锐拓相应设备图片) The NDA or ANDA submission for the TDS product should include a method development and validation report with complete information/data supporting the proposed drug release method and acceptance criteria. TDS产品的NDA或ANDA提交文件应包括方法开发和验证报告,其中包含支持拟定药物释放方法和验收标准的完整信息/数据。 Sufficient detail and data should be included in the method development and validation report so the adequacy of the method for batch release and stability testing can be properly assessed. Examples of parameters to eva1uate during method development include selection of USP apparatus/other equipment, drug release medium, rotation or agitation speed, temperature, pH,  sink conditions, use of a surfactant, and other technical aspects of the test. An in vitro drug release method should be simple, reliable, reproducible, discriminating, and robust. Applicants should strive to develop a method that releases as much drug as possible. 方法开发和验证报告中应包含足够的细节和数据,以便能够正确评估批放行和稳定性测试方法的充分性。方法开发过程中要评估的参数示例包括USP仪器/其他设备的选择、药物释放介质、旋转或搅拌速度、温度、pH值、沉降条件、表面活性剂的使用以及测试的其他技术方面。体外药物释放方法应简单、可靠、可重复、鉴别和耐用。申请人应努力开发一种释放尽可能多药物的方法。 The validation section of the report should include complete information/data regarding: i) the discriminating ability of the selected method, ii) the validation of the drug release methodology, and iii) the validation/verification of the analytical method selected to assay the drug release samples. The selected method should be able to differentiate the release profiles of TDS that are intentionally manufactured with meaningful variations in critical process parameters and formulation components. Validation data should demonstrate the range and sensitivity of the  method for proportional drug release across different strengths of the TDS. In addition,  validation data should demonstrate reproducibility of the method for drug release across different runs of the same batch and its robustness, i.e., its capacity to remain unaffected by changes in receptor medium temperature, paddle rate, and other method parameters 报告的验证部分应包括以下方面的完整信息/数据:i)所选方法的区分力,ii)药物释放方法的验证,以及iii)测定药物释放样品所选分析方法的验证/验证。所选方法应能够区分有意制造的TDS的释放曲线,其关键工艺参数和配方组分存在有意义的变化。验证数据应证明该方法在TDS不同强度下的比例药物释放范围和灵敏度。此外,验证数据应证明药物释放方法在同一批次的不同运行中的再现性及其耐用性,即其不受受体介质温度、桨速率和其他方法参数变化影响的能力 相关阅读:《FDA IVRT测试 工业指南翻译稿》 The acceptance criteria for the in vitro drug release test should be based on the proposed TDS product batch release data, including data from bio-batches (e.g., BE, PK, Clinical), registration/exhibit batches, and commercial batches (if available). To set the acceptance criteria for the in vitro drug release test, a complete drug release profile should be established by collecting data until there is no increase in drug release over three consecutive time points (sampling every 2 hours). The drug release profile of TDS products typically encompasses  initial, middle, and terminal phases; thus, for setting the acceptance criteria, there should be at least one sampling time point covering each phase. The drug release data should be reported as  the cumulative percent of drug being released with time. The acceptance criteria range for each specific timepoint should be based on the mean percentage value of drug released ± 10 percent using the drug release data generated at these times. The percentage should be determined based  on the TDS product’s label claim. If less than 100 percent drug is released, but no drug increase is observed over three consecutive sampling timepoints (i.e., incomplete drug release), the amount of drug reached at the plateau should be considered 100 percent for the purposes of estimating the percent of drug release over time. 体外药物释放试验的验收标准应基于拟定的TDS产品批放行数据,包括生物批次(如BE、PK、临床)、注册/展示批次和商业批次(如可用)的数据。为了制定体外药物释放试验的验收标准,应通过收集数据建立完整的药物释放曲线,直到连续三个时间点(每2小时取样一次)药物释放量没有增加。TDS产品的药物释放概况通常包括初期、中期和末期;因此,为了设定验收标准,每个阶段至少应有一个采样时间点。药物释放数据应报告为药物随时间释放的累积百分比。每个特定时间点的验收标准范围应基于使用这些时间生成的药物释放数据的药物释放的平均百分比值±10%。百分比应根据TDS产品的标签声明确定。如果释放的药物少于100%,但在连续三个采样时间点内未观察到药物增加(即药物释放不完全),则应将达到稳定期的药物量视为100%,以估计药物随时间的释放百分比。 Wider acceptance criteria range for the drug release test may be acceptable if they are supported by an approved in-vitro in-vivo correlation model. 如果有已批准的体外-体内相关模型支持,则药物释放试验的接受标准范围可能会更宽。 g.Crystal Presence The presence of crystals or crystallization of the drug in the TDS over time can negatively impact the product performance. Therefore, it is important to establish a test and acceptance criteria to confirm the absence of crystals to be used at release and on stability. Microscopic and photometric methods are preferred rather than a simple visual count. It is recognized that some products are designed to be suspensions, however, this design does not preclude the need for a crystal specification. Suspension products should still include tests and acceptance criterion to ensure against crystal propagation, which may impact drug delivery or adhesion properties of the product. g.析晶现象 随着时间的推移,TDS中析出药物晶体或结晶会对产品性能产生负面影响。因此,建立一个测试和验收标准,以确认释放和稳定性时不存在待使用的晶体,这一点很重要。最好使用显微镜和光度法,而不是简单的目视计数。人们认识到,虽然有些产品设计为悬浮液,但这种设计并不排除对晶体规格的需求。悬浮产品仍应包括测试和验收标准,以防止晶体化,这可能会影响药物输送或产品的粘附性能。 h.Pouch Integrity The pouch for a TDS is critical to the stability and integrity of the product. Pouch integrity testing should be conducted as part of finished product release unless justification is provided for an alternative approach that assures the finished product specification is met. h.袋的完整性 TDS袋对产品的稳定性和完整性至关重要。袋完整性测试应作为成品放行的一部分进行,除非为确保符合成品规范的替代方法提供了理由。 D.Additional Stability Studies In addition to the standard battery of formal stability and photostability studies for drug substance and drug products discussed in ICH Q1A and ICH Q1B, TDS applicants and manufacturers should conduct stability studies under challenge conditions that include temperature excursions, freeze/thaw, and/or crystal seeding. These additional studies are intended to address certain product quality issues such as crystal formation and growth. Moreover, in-use photostability testing may be appropriate to conduct for certain TDS formulations, depending on backing membrane opacity, duration of wear, and its expected exposure to light when in use. D.其他 稳定性研究 除了ICH Q1A和ICH Q1B中讨论的原料药和药物产品的正式稳定性和光稳定性研究的标准组外,TDS申请人和制造商应在挑战条件下进行稳定性研究,包括温度漂移、冷冻/解冻和/或晶种。这些额外的研究旨在解决某些产品质量问题,如晶体形成和生长。此外,使用中的光稳定性测试可能适用于某些TDS制剂,这取决于背衬膜的不透明度、磨损持续时间以及使用时预期的光暴露。 A.Product Adhesion Considerations In vivo adhesion studies provide the greatest prediction of adhesion, a CQA, for a proposed commercial product. Applicants should demonstrate that reasonable efforts were made to optimize adhesive characteristics of the TDS. This optimization should balance properties such as adhesiveness, cohesiveness, and stability to ensure a consistent and uniform adhesion of its entire surface area to the skin for the entire duration of wear. Applicants should develop a comprehensive strategy for assessing the adhesive attributes of the TDS. In vivo adhesion studies are necessary to demonstrate adequate adhesion of the TDS. Therefore, when possible, such as in efficacy studies for an NDA, subject diaries describing the actual in-use product adhesion performance should be used. This information bolsters adhesion data collected from the studies described below and in other guidances A.产品附着力注意事项 体表粘附研究为拟定的商业产品提供了最大的粘附预测,即CQA。申请人应证明已作出合理努力以优化TDS的粘合特性。这种优化应平衡诸如粘附性、内聚性和稳定性等特性,以确保在整个使用期间其整个表面区域与皮肤的一致性和均匀粘附力。申请人应制定全面的策略来评估TDS的粘性属性。体内粘附研究是证明TDS充分粘附的必要条件。因此,在可能的情况下,例如在NDA的疗效研究中,应使用描述实际在用产品粘附性能的受试者日记。该信息支持从以下研究和其他指南中收集的粘附数据 Characterization of the adhesive properties of a TDS should demonstrate that the labelled uses are substantiated. For example, if the TDS is intended to be worn during bathing and showering, applicants should demonstrate that the TDS will continue to adhere during and after such incidental exposure to water. Product reinforcement, such as taping the edges or use of overlays, or occluding the product from water during bathing should not be permitted during the in vivo adhesion eva1uation TDS粘附特性的表征应证明标签用途得到证实。例如,如果TDS打算在沐浴和淋浴时使用,申请人应证明TDS在偶然接触水期间和之后将继续保持粘附。在体内粘附性评估期间,不允许使用产品加固,例如贴边或使用覆盖物,或在沐浴期间将产品与水隔绝 We recommend that when assessing the adhesion of a TDS, applicants use a 5-point numerical scale in which each score corresponds to a specified range of adhered surface area of the TDS, as follows: 我们建议,在评估TDS粘附性时,申请人使用5分制的数值量表,其中每个分数对应TDS粘附表面积的指定范围,如下所示:  0 = ≥ 90% adhered (essentially no lift off the skin) 粘附(基本上不会剥离皮肤) 1 = ≥ 75% to < 90% adhered (some edges only lifting off the skin) 粘附(某些边缘仅从皮肤上剥离) 2 = ≥ 50% to < 75% adhered (less than half of the TDS lifting off the skin) 粘附(少于TDS的一半剥离皮肤) 3 = > 0% to < 50% adhered (not detached, but more than half of the TDS lifting off the skin without falling off) 粘附(未脱落,但超过一半的TDS从皮肤上剥离而不脱落) 4 = 0% adhered (TDS detached; completely off) 粘附(TDS分离;完全脱落) Additionally, the following information should be collected: 此外,还应收集以下信息: At each time point when adhesion is assessed on the above described 5-point scale, the scorer should also record their actual percent adherence estimate (e.g., if the observer scores the product as a two on the five point scale and estimates that the product appears to be 60 percent adhered, a score of two and a 60 percent should be recorded for that time point). 在以上述5分制评估粘附力的每个时间点,记分员还应记录他们的实际粘附百分比估计值(例如,如果观察者在5分制上将产品评分为2分,并估计产品粘附率为60%,则应记录该时间点的2分和60%)。 Photographic evidence showing the extent of TDS adherence to the skin at each time point should be provided. 应提供照片证据,显示在每个时间点TDS粘附到皮肤的程度。 B.Product Storage and Disposal – Labeling Considerations TDS storage conditions should be supported by stability data and stated in the label. Generally, we recommend controlled room temperature for the storage of TDS. Excursions, if permitted, should be indicated on the label. The label should also state that TDS should not be stored outside of the pouch if that is necessary to preserve the safety, efficacy, and quality of the TDS. B.产品储存和处理-标签注意事项 TDS储存条件应得到稳定性数据的支持,并在标签中说明。通常,我们建议在室温下储存TDS。如果允许,应在标签上注明。标签还应说明,如果为了保持TDS的安全性、有效性和质量,TDS不应存放在袋外。 Transdermal and topical delivery systems often contain post-use residual drug in the delivery system. Considering the therapeutic nature of the drug compound and potential adverse events resulting from unintended exposure, the instruction for product disposal should be clearly outlined in the labeling. It is important that the disposal process prevents exposure of the residual drug to the environment and/or other people. Depending on the nature of the product, special instructions may be required to prevent exposure to children and caregivers, which could result in significant safety-related consequences 经皮和局部递送系统使用后,通常会有残留的药物。考虑到药物的治疗性质和由于意外暴露引起的潜在不良事件,标签中应明确列出产品处理事项。处理过程必须防止残余药物暴露于环境和/或其他人。根据产品的性质,可能需要特殊说明,以防止儿童和护理人员接触,否则可能会导致严重的安全相关后果 实验仪器:锐拓 RT800 自动取样透皮扩散系统

查看更多
2023-03-07

经皮和局部给药系统——产品开发和质量考量工业指南翻译稿(上部分)

This guidance provides recommendations to applicants and manufacturers of transdermal and topical delivery systems (TDS) regarding the pharmaceutical development and quality information to include in new drug applications (NDAs) and abbreviated new drug applications (ANDAs). Specifically, the guidance discusses FDA’s current thinking on product design and pharmaceutical development, manufacturing process and control, and finished product control. It also addresses special considerations for areas where quality is closely tied to product performance and potential safety issues, such as adhesion failure and the impact of applied heat on drug delivery. 本指南为透皮和局部给药系统(TDS)的申请人和制造商提供了关于新药应用(NDAs)和仿制药应用(ANDAs)中包含的药物开发和质量信息的建议。具体而言,该指南讨论了FDA目前在产品设计和药物开发、制造过程和控制以及成品控制方面的思考。它还针对质量与产品性能密切相关的领域和潜在的安全问题(如粘附性和受热)提出了特殊考虑。 In general, FDA’s guidance d0cuments do not establish legally enforceable responsibilities. Instead, guidances describe the Agency’s current thinking on a topic and should be viewed only as recommendations, unless specific regulatory or statutory requirements are cited. The use of he word should in Agency guidances means that something is suggested or recommended, but not required. 一般来说,FDA的指导文件没有规定法律上可强制执行的责任。相反,指南描述了机构当前对某一主题的思考,除非引用了具体的法规或法定要求,否则仅应视为建议。在机构指南中使用“应该”一词意味着建议或推荐,但不是必须的。 A.General/通则 Transdermal delivery systems are designed to deliver an active ingredient (drug substance) across the skin and into systemic circulation, while topical delivery systems are designed to deliver the active ingredient to local tissue. Both delivery systems present similar manufacturing and quality control concerns and similar risks to patients. TDS can be broadly divided into matrix type and liquid or gel reservoir type delivery systems. 经皮递送系统设计用于将活性成分(药物)递送透过皮肤并进入全身循环,而局部递送系统设计为将活性成分递送至局部组织。两种输送系统都存在类似的制造和质量控制问题,对患者也存在类似的风险。TDS可大致分为基质型和液体或凝胶储库型输送系统。 Matrix type TDS contain one or more active ingredients dissolved or partially suspended in a mixture of various components, including adhesives, penetration enhancers, softeners, and preservatives, and are typically manufactured using solvent, hydrogel, or hot melt-based practices. An example of a matrix type TDS is shown in Figure 1, but matrix TDS may include additional layers and/or more complex designs 基质型TDS含有一种或多种活性成分,其溶解或部分悬浮在各种成分的混合物中,包括粘合剂、渗透促进剂、柔软剂和防腐剂,通常使用溶剂、水凝胶或基于热熔的方法制造。基质型TDS的示例如图1所示,但基质型TDS可能包括额外的层和/或更复杂的设计 图1.基质型透皮或局部给药系统 Reservoir type TDS similarly contain a variety of components in liquid or semi-solid form; however, reservoir type TDS utilize a heat-sealed area to entrap the active gel between the backing membrane and a microporous membrane. An example of a reservoir type TDS is shown in Figure 2. Because of the inherent failure modes and safety risks associated with the reservoir TDS, FDA recommends TDS manufacturers and applicants focus development efforts on matrix type TDS. 储库型TDS同样包含各种液体或半固体形式的组分;然而,储库型TDS利用热密封区域将活性凝胶截留在背衬膜和微孔膜之间。储库类型TDS的示例如图2所示。由于储库TDS固有的故障模式和安全风险,FDA建议TDS制造商和申请人将开发工作重点放在基质类型TDS上。 图2储库型经皮或局部递送系统 B.Regulatory Status/监管状况 Transdermal and topical delivery systems are combination products as defined by 21 CFR part 3, and must comply with 21 CFR part 4 subpart A (Current Good Manufacturing Practice Requirements for Combination Products). Within 21 CFR part 4, there is descr1ption of how requirements from 21 CFR parts 210 and 211 (drug CGMPs) and 21 CFR part 820 (device Quality System regulation) apply to combination products. 经皮和局部递送系统是21 CFR第3部分中定义的组合产品,必须符合21 CFR第4部分A子部分(组合产品的现行良好生产规范要求)。在21 CFR第4部分中,描述了21 CFR第210和211部分(药物CGMP)和21 CFR第820部分(器械质量体系法规)的要求如何适用于组合产品。 In particular, design controls (21 CFR part 820.30) apply to drug-device combination products including TDS. Essentially, design control activities should confirm that there are no negative interactions between constituent parts and assure that their combined use results in a combination product that is safe and effective and performs as expected. Guidance for industry on pharmaceutical development also addresses product design and development procedures, reflecting quality by design principles. While quality by design and design controls share similar characteristics and goals, the device Quality System regulation (21 CFR part 820) includes specific requirements for design development that manufacturers must satisfy. 特别是,设计控制(21 CFR第820.30部分)适用于包括TDS在内的药物器械组合产品。从本质上讲,设计控制活动应确认组成部分之间不存在消极作用,并确保其组合使用产生安全有效,且性能符合预期。药物开发行业指南还涉及产品设计和开发程序,反映了设计原则的质量。虽然设计质量和设计控制具有相似的特征和目标,但设备质量体系法规(21 CFR第820部分)包括制造商必须满足的设计开发的具体要求。 It may be possible to leverage many aspects of pharmaceutical development as described in International Conference for Harmonisation ICH Q8(R2) to achieve compliance with design controls. For example, the Quality Target Product Profile (QTPP) (see section III.A. below) is similar to “design inputs” (21 CFR part 820.30(c)), which ensure that design requirements are appropriate to address the intended use of the product. Further, studies conducted to verify that the critical quality attributes (CQAs) are met in the finished product may also address requirements for design “verification” and “validation” (21 CFR part 820.30(f), (g)), which ensure that the product’s “design outputs” (21 CFR part 820.30(d)) result in a product that safely and effectively achieves its intended effects). 如国际协调会议ICH Q8(R2)所述,可以利用药物开发的许多方面来实现设计控制的合规性。例如,质量目标产品概要(QTPP)(见下文第III.A.节)类似于“设计输入”(21 CFR第820.30(c)部分),确保设计要求适合于解决产品的预期用途。此外,为验证成品是否满足关键质量属性(CQA)而进行的研究也可能涉及设计“验证”和“确认”要求(《美国联邦法规》第21篇第820.30(f)、(g)部分),以确保产品的“设计输出”(《联邦法规》21篇第820.30(d)部分)产生安全有效地达到预期效果的产品。 The following section provides an overview of considerations for product and process development, described from a pharmaceutical development perspective. As described above, development of a TDS product must also be compliant with design controls (21 CFR part 820.30). We recognize that the terminology used in 21 CFR part 820.30 can differ from that used in a particular pharmaceutical development program. Where pharmaceutical development practices are leveraged and built upon to demonstrate compliance with design controls for a TDS product, applicants should be able to communicate to FDA how the terminology they use relates to design control principles and requirements 以下部分概述了从药物开发角度描述了产品和工艺的开发注意事项。如上所述,TDS产品的开发还必须符合设计控制(21 CFR第820.30部分)。我们认识到,21 CFR第820.30部分中使用的术语可能与特定药物开发计划中使用的不同。申请人应该能够与FDA沟通他们使用的术语如何与设计控制原则和要求相关系。 A.Quality Target Product Profile/目标产品质量概况 Prior to TDS development, the applicant should establish the desired quality target product profile (QTPP). The QTPP is a prospective summary of the quality characteristics of the TDS product that ideally will be achieved to ensure the desired quality, taking into account safety and efficacy of the product (ICH Q8(R2)). In general, QTPP elements and their quality considerations for TDS may include 在开发TDS之前,申请人应建立所需的质量目标产品概要(QTPP)。QTPP是对TDS产品质量特性的前瞻性总结,在考虑到产品的安全性和有效性的情况下,理想情况下可实现该特性以确保所需的质量(ICH Q8(R2))。一般来说,TDS的QTPP元素及其质量考虑因素可能包括 Other QTPP elements may exist depending on therapeutic need, patient population, or other functional property requirements. For example, the size of the finished product may be a QTPP element depending on the location on the body where the product is to be applied or if the patient population is pediatric. 根据治疗需要、患者群体或其他功能特性要求,可能存在其他QTPP元件。例如,成品的大小可以是QTPP元素,这取决于产品在身体上的应用位置,或者患者群体是否为儿童。 B.Critical Quality Attributes/关键质量属性 1.TDS Product/TDS产品 Early in the TDS development process, the applicant should generate a list of potential CQAs. A CQA is a physical, chemical, biological, or microbiological property or characteristic that should be within an appropriate limit, range, or distribution to ensure the desired product quality (ICH Q8(R2)). Knowledge of the QTPP for the product, in combination with prior knowledge, risk assessments, and/or experimentation, can be used to develop the list of product CQAs. Each CQA, either alone or in concert with one or more other CQAs, should relate to one or more elements of the TDS product QTPP. The list of product CQAs can be modified as product development progresses and new knowledge is gained. The CQAs of the drug substance(s), excipients, components and container closure system should also be identified in the application. 在TDS开发过程的早期,申请人应生成一份潜在CQAs列表。CQAs是一种物理、化学、生物或微生物性质或特性,应在适当的限度、范围或分布内,以确保所需的产品质量(ICH Q8(R2))。产品QTPP的知识,结合先前的知识、风险评估和/或实验,可用于制定产品CQAs列表。每个CQA(单独或与一个或多个其他CQA联合)应与TDS产品QTPP的一个或更多元素相关。产品CQAs列表可以随着产品开发的进展和新知识的获得而修改。申请中还应确定原料药、辅料、成分和包装容器系统的CQAs。 For TDS, CQAs typically include appearance (such as lack of visible crystals), dimensions, uniformity of dosage units, assay, permeation enhancer content, impurities and degradants, in vitro drug release profile, preservative/antioxidant content (if present), peel adhesion, tack, release liner peel strength, shear strength, cold flow, residual solvents, residual monomers, microbial limits, and package integrity. 对于TDS,CQAs通常包括外观(例如无可见晶体)、尺寸、剂量单位的均匀性、测定方法、渗透促进剂的含量、杂质和降解物、体外药物释放概况、防腐剂/抗氧化剂含量(如果有)、剥离强度、粘性、剥离衬垫剥离强度、剪切强度、冷流、残留溶剂、残留单体、微生物限度、以及包装完整性。 2.Drug Substance/原料药 Selection of a drug substance should be justified based on the physicochemical and biological properties of the drug substance that can influence the performance of the TDS product and its manufacturability. In particular, properties that influence the rate of delivery, such as molecular weight, melting point, partition coefficient, pKa, aqueous solubility, and pH, should be considered. Other characteristics of the drug substance such as particle size, crystal form, and polymorphism should be eva1uated and justified in terms of product performance. 应根据可影响TDS产品性能及其可制造性的药物的物理化学和生物特性来证明原料药的选择是合理的。特别是,应考虑影响递送速率的性质,如分子量、熔点、分配系数log P、电离常数pKa、水溶性和pH。应根据产品性能评估和证明药物的其他特性,如颗粒大小、晶体形式和多态性。 3.Excipients and Components/辅料及成分 Excipients and components used in TDS can include various adhesives, permeation enhancers, rate controlling or non-rate controlling membranes, solubilizers, plasticizers/softeners, or tackifiers, all of which can influence the quality and performance attributes of TDS TDS中使用的辅料和成分可以包括各种粘合剂、渗透促进剂、速率控制或非速率控制膜、增溶剂、增塑剂/软化剂或增稠剂,所有这些都会影响TDS的质量和性能属性 Rigorous qualification of key excipients and components is important to ensure optimum product quality attributes in transdermal and topical formulations, and facilitates the postapproval change process for changes in the raw materials, manufacturing process, or suppliers. 关键赋形剂和成分的严格确认对于确保透皮和外用制剂的最佳产品质量属性非常重要,并有助于原材料、制造工艺或供应商变更的批准后变更流程。 For example, when qualifying the adhesives in a TDS product, an applicant should consider the following attributes: 例如,在鉴定TDS产品中的粘合剂时,申请人应考虑以下属性: ●For adhesive polymer(s) as raw material(s): molecular weight, polydispersity, spectroscopic analysis (e.g., infrared radiation (IR) absorption), thermal analysis, intrinsic or complex viscosity, and measurement of residual monomers, dimers, solvents, heavy metals, catalysts, and initiators.  对于作为原料的粘合剂聚合物:分子量、多分散性、光谱分析(例如,红外光谱(IR)吸收)、热分析、固有或复合粘度,以及残余单体、二聚体、溶剂、重金属、催化剂和引发剂的测量。 ●For adhesive as a laminate (in the absence of the active ingredient and other excipients): residual solvents, peel, tack, shear, and adhesion.  对于作为层压板的粘合剂(在没有活性成分和其他赋形剂的情况下):残余溶剂、剥离、粘性、剪切和粘附。 ●For adhesive in the final product (along with drug substance and other excipients and components): identification, residual monomers, dimers, and solvents; impurities; loss on drying; and uniformity. Other properties to be considered include the viscoelastic properties (such as elastic modulus (G’), viscous modulus (G”), and creep compliance (J)), and functional properties including, but not limited to, peel, shear, adhesion, tack, in vitro drug release, and in vitro drug permeation.  对于最终产品中的粘合剂(以及药物和其他赋形剂和成分):鉴定、残留单体、二聚体和溶剂;杂质;干燥损失;以及均匀性。要考虑的其他性质包括粘弹性性质(如弹性模量(G')、粘性模量(G”)和蠕变顺应性(J)),以及功能性质,包括但不限于剥离、剪切、粘附、粘性、体外药物释放和体外药物渗透。 The properties of an adhesive as raw material (e.g., rheology, including intrinsic viscosity and complex viscosity) can impact the final product quality attributes. Adhesive suppliers’ specifications are often wide; thus, adhesive raw material received throughout the life cycle of the product may vary greatly within the adhesive suppliers’ specifications. For example, the rheological properties of the adhesive lots used in the pivotal in vivo trial for TDS (e.g., bioequivalence (BE), Pharmacokinetic (PK), adhesion studies) may not be consistent with the supplier’s previously manufactured adhesive lots or their future adhesive lots. Therefore, applicants should request historical rheology values from the adhesive manufacturer to better understand their process capabilities and the potential influence of variability in the adhesive rheology on the final product. This can further assist applicants in assessing the need to establish or tighten internal controls for the raw material. 作为原材料的粘合剂的性质(例如,流变学,包括固有粘度和复合粘度)会影响最终产品的质量属性。粘合剂供应商的规格通常很宽;因此,在产品的整个生命周期中接收的粘合剂原料在粘合剂供应商的规格范围内可能会有很大差异。例如,TDS关键体内试验中使用的粘合剂批次的流变特性(例如生物等效性(BE)、药代动力学(PK)、粘附研究)可能与供应商先前制造的粘合剂批次或其未来生产的粘合剂批次不一致。因此,申请人应要求粘合剂制造商提供历史流变学值,以便更好地了解其工艺能力以及粘合剂流变学变化对最终产品的潜在影响。这可以进一步帮助申请人评估是否需要建立或加强原材料内部控制。 Identifying, eva1uating, and properly controlling similar quality attributes of other key components of TDS products will enhance product and process understanding of the TDS throughout its life cycle. 识别、评估和适当控制TDS产品其他关键部分的类似质量属性,将增强产品和过程对TDS整个生命周期的理解。 4.Identifying Labeling/标签确认 Applicants are encouraged to incorporate a representative label early in development to assure the labeling process or inks utilized for printing do not interact with the TDS product, and to properly assess inks during extractable and leachable studies. The identifying label is typically placed on the backing membrane of TDS and should, at minimum, include the product name and strength 鼓励申请人在开发初期加入具有代表性的标签,以确保用于印刷的标签工艺或油墨不会与TDS产品相互作用,并在可提取和可浸出研究期间适当评估油墨。识别标签通常放置在TDS的背膜上,并且至少应该包括产品名称和规格 Transdermal and topical systems that are clear, translucent, or colored to match human skin tones can make it difficult to find the TDS on the patient, and have led to medication administration errors when patients or caregivers fail to remove old systems and apply more than one system at a time. Clear or translucent TDS may also be difficult to find if they detach prematurely from a patient, thereby increasing the potential for secondary or accidental exposure of the drug to a health care provider, caregiver, or child. Therefore, we recommend the backing membrane be printed with ink that has adequate contrast and remains visible for the duration of system wear and after disposal. 透明、半透明或颜色与人类肤色相匹配的透皮系统和外用系统可能难以在患者身上找到TDS,并且当患者或护理人员未能移除旧TDS并一次应用多个TDS时,会导致用药错误。如果透明或半透明的 TDS 过早地从患者身上脱落,也可能很难找到,从而增加了医疗保健提供者、护理者或儿童二次或意外接触药物的可能性。因此,我们建议使用具有足够对比度的油墨印刷背衬膜,并在系统使用期间和处理后保持可见。 C.Product and Process Development/产品与工艺开发 The principles of quality by design (QbD) and elements of pharmaceutical development discussed in ICH Q8(R2), Q9, and Q10should be applied throughout the TDS life cycle to ensure TDS products have the identity and strength, and meet the quality and purity characteristics required under section 501(a)(2)(B) of the Federal Food, Drug, and Cosmetic Act (FD&C Act) ICH Q8(R2)、Q9和Q10中讨论的设计质量原则(QbD)和药物开发要素应在TDS的整个生命周期中应用,以确保TDS产品具有特性和强度,并满足《联邦食品、药品和化妆品法案》(FD&C法案)第501(a)(2)(B)节要求的质量和纯度特征 TDS can be as simple as a single drug substance dissolved in a single adhesive, or highly complex, multi-component, multi-adhesive, multi-laminate matrices. Excipients and components in TDS can include various adhesive systems, permeation enhancers, rate controlling or non-rate controlling membranes, solubilizers, plasticizers/softeners, or tackifiers TDS可以像溶解在单一粘合剂中的单一药物一样简单,也可以是高度复杂的多组分、多粘合剂、多层压基质。TDS中的辅料和成分可包括各种粘合剂系统、渗透促进剂、控释或非控释膜、增溶剂、增塑剂/柔软剂或增稠剂。 As a general principle, product development strategies should seek to minimize product complexity while still achieving the QTPP. Less complex products are likely to have fewer potential failure modes than more complex products. Product and process controls can be simplified as product complexity decreases, which can reduce the risk of manufacturing problems occurring during routine commercial manufacture. 作为一项普遍原则,产品开发策略应该寻求在实现QTPP的同时最小化产品复杂性。较不复杂的产品可能比较复杂的产品具有更少的潜在的失效模式。随着产品复杂性的降低,可以简化产品和过程控制,这可以降低在日常商业制造过程中发生制造问题的风险。 Systematic quality risk assessments and process characterizations can support the identification of appropriate controls for manufacturing process variables, in order to produce TDS products with acceptable CQAs. Risk assessments can also help define the robustness of certain critical material attributes (CMAs) and critical process parameters (CPPs), such as raw material characteristics, hold times and equilibration periods 系统的质量风险评估和过程特征可以支持识别制造过程变量进行适当的控制,以生产具有可接受的CQAs的TDS产品。风险评估还可以帮助确定某些关键材料属性(CMAs)和关键工艺参数(CPPs)的稳健性,如原材料特性、保持时间和平衡期 在申请中需要提交的材料请看下期——下半部分 感谢观看

查看更多
2023-03-03

锐拓RT7流池法溶出系统应用案例——复方制剂中原料药的表观溶出度研究

复方制剂是由多个成分或多个组分所组成的单一制剂,各成分或组分具有一定的配伍和配比关系。复方制剂正逐渐成为化药企业进行战略布局时选择的重要细分赛道。 复方制剂开发过程中会面临药物组分选择、稳定性、释放速率等制剂工艺技术壁垒,各组分溶出释放行为的差异会极大影响药物疗效。我国药品监管部门也已经关注到原料药的不同晶型可能对药物的安全性、有效性和质量可控性造成影响,并提出《化学仿制药晶型研究技术指导原则》。 在复方制剂开发过程中,测定不同原料药组分的表观溶出度,研究晶型、粉碎处理工艺、混合配比等因素对各原料药组分溶出释放的影响,能够为制剂工艺设计和优化提供极大的帮助。 流池法溶出系统广泛应用于原料药的表观溶出度测定,例如欧洲药典2.9.43. APPARENT DISSOLUTION,此测定方法使用流池法的粉末池装置,适用于较少量且单一的原料药粉末的表观溶出度测定。 流池法(USP  Apparatus 4) 锐拓RT7流池法溶出系统 当我们研究复方制剂中原料药的表观溶出度时,需要将多种原料药按照处方比例混合后进行测试,甚至需要添加等同于制剂处方的原料药用量。此时,待测原料药的量会更多,内径细小的粉末池体内会堆积大量待测样品,粉末之间的堆积效应会对其溶出速率造成较大的影响。 为了减少原料药粉末的堆积效应,本次研究使用22.6mm内径的大流通池进行原料药的表观溶出度测定。大量的原料药能够被充分均匀平铺在流通池内,尽可能减少堆积效应对原料药真实溶出速率的影响。 待测复方制剂含有两个组分(原料药A,原料药B),且制剂处方中两种原料药的用量差异较大。本研究将对单一组分和混合组分进行表观溶出度测定,同时考察不同pH环境和不同生产工艺对待测原料药的表观溶出度的影响。 pH值对原料药表观溶出度的影响 在不同pH值溶出介质中,测定单一原料药的表观溶出度,以研究释放环境pH值变化对原料药表观溶出度的影响程度。 复方制剂中两种组分(原料药A,原料药B)各自在pH1.2和pH4.5溶出介质中的表观溶出度测定结果如下图所示。测试结果显示,两种组分原料药的表观溶出度均对pH值有较高依赖性,并均随pH值的降低而溶出加快。进一步地,我们发现释放环境pH值对原料药B的表观溶出度的影响更大。 混合状态下两种组分原料药的表观溶出度 按照复方制剂处方的用量比例,对两种组分的原料药进行混合,并测定在混合状态下两种原料药在不同pH值溶出介质中的表观溶出度。 测试结果如下图所示。在不同的pH环境中,原料药A的表观溶出度均快于原料药B。随着pH值由1.2上升到4.5,两种原料药的表观溶出度差异变得更大。 另外,两种原料药在混合状态与单一成分状态下的表观溶出度并没有显著差异,可以初步判断两种组分并不会相互影响其溶出释放速率。 生产工艺对原料药表观溶出度的影响 在前面研究测试的基础上,我们进一步考察了不同生产工艺原料药的表观溶出度。根据各组分的测试数据,分析不同生产工艺和工艺参数对原料药表观溶出度的影响。更进一步地,我们使用流池法对复方制剂成品进行了体外释放度测定,完成了整个复方制剂开发周期从原料药到制剂成品的溶出释放研究。(由于技术保密协议,相关研究细节和测试结果不予以公开。) 传统溶出方法(篮法、桨法)在进行原料药粉末表观溶出度测定时有很大的局限性,例如:原料药粉末在投药后会漂浮在液面上(桨法)、原料药粉末会从转篮的网孔中漏出(篮法)、易溶原料药会在溶出杯中快速释放导致无法测定溶出曲线、难溶原料药可能会在溶出杯底堆积导致整体溶出速率变慢且缺乏区分力。 得益于近年来流池法溶出装置的创新和发展,我们可以用更加科学的分析手段来研究复方制剂中多组分原料药的表观溶出度。进一步地,凭借锐拓RT7流池法溶出系统独门快速取样技术,取样间隔可以达到最快30秒,从而更精准地测定速释易溶型原料药的表观溶出度。

查看更多
2023-02-23

EMA 角质层取样(胶带剥离术)深圳锐拓翻译稿

This annex provides information for an in vivo stratum corneum sampling (or tape stripping (TS)) study for semi-solid formulations as a permeation kinetic method to show equivalence, in lieu of a therapeutic equivalence study. 本附录提供了半固体制剂的体内角质层取样(或胶带剥离(TS))研究的信息,作为渗透动力学方法,以显示等效性,而不是治疗等效性研究。 The S.C. sampling study is a minimally invasive technique that involves sequential removal of the outermost skin layer (i.e., the stratum corneum (S.C.)) using adhesive tapes after application of a drug-containing formulation. The amount of drug in the S.C. depends on three main processes: drug partitioning from the formulation into the SC, drug diffusion across the S.C., and drug partitioning out of the S.C. into the viable tissues. A major advantage of TS is that the experiment is conducted in vivo with a fully functioning cutaneous microcirculation so that drug clearance from the skin is unimpeded. S.C.取样研究是一种微创技术,涉及在施用含药物制剂后使用胶带依次去除最外层皮肤(即角质层(S.C.))。S.C.中的药物量取决于三个主要过程:药物从制剂分配到SC中,药物在S.C.中扩散,药物从S.C.分配到活组织中。TS的一个主要优点是,该实验在体内进行,具有完全功能的皮肤微循环,因此药物从皮肤的清除是不受阻碍的。 TS data provide direct measurements and information on the local bioavailability of semi-solid drug products that act on or in the S.C. e.g. antifungal products. In cases when the target sites of action are beyond the S.C., TS data may provide a suitable surrogate to characterise the rate and extent of drug absorption to the underlying tissues. TS数据提供了作用于S.C.或在S.C.中的半固体药物产品(例如抗真菌产品)的局部生物利用度的直接测量和信息。在目标作用位点超出S.C.的情况下,TS数据可以提供一个合适的替代物,以表征药物吸收到底层组织的速率和程度。 In vivo TS studies are only applicable for products where drug diffusion into and through the SC takes place. Thus, TS should not be used for testing of drug products to be applied on significantly damaged skin (e.g. open wounds, burns) or skin of premature new-born. In addition, any products that contain volatile drugs or target primarily the cutaneous appendages (e.g. hair follicles, sebaceous glands) are also not suitable. 体内TS研究仅适用于药物扩散进入和通过SC的产品。因此,TS不应用于测试应用于严重受损皮肤(如开放性伤口、烧伤)或早产新生儿皮肤的药物产品。此外,任何含有挥发性药物或主要针对皮肤附件(如毛囊、皮脂腺)的产品也不适用。 A TS study is not an automated process and careful consideration of the experimental design is vital. The experimental conditions of the pivotal study should be assessed individually for the concerned products and should be established by performing a pilot TS study. A summary of the development and optimisation of the TS method should be provided. TS研究不是一个自动化的过程,仔细考虑实验设计至关重要。关键研究的实验条件应针对相关产品进行单独评估,并应通过进行TS试验研究来确定。应提供TS方法开发和优化的总结。 The following experimental conditions should be established and verified during the pilot study: 在试点研究期间,应建立并验证以下实验条件: ●TS study should be conducted on healthy, normal forearm (volar) skin areas with avdequate skin barrier function. The inclusion/exclusion criteria for skin conditions should be defined. Skin with tattoos, any signs of dermatological abnormality or exhibiting a significant density of terminal haivr should be excluded. The preparation and cleaning procedures prior to the experiment should be established and further, that the treatment sites are not damaged by these processes. TS研究应在具有足够皮肤屏障功能的健康、正常前臂(掌侧)皮肤区域进行。应确定皮肤状况的纳入/排除标准。任何带有纹身、有皮肤病异常迹象或末端毛发密度明显的皮肤,应排除在外。制定实验前的准备和清洁程序,并进一步确保这些过程不会损坏处理部位。 ●Skin integrity should be determined before and after the experiment. This is normally performed by the measurement of Transepidermal Water Loss (TEWL), although other techniques may be applicable if appropriate. The acceptance criteria should be fully discussed and justified. 应在实验前后确定皮肤完整性。这通常是通过测量经表皮失水(TEWL)来进行的,但如果合适的话,其他技术也可能适用。应充分讨论并证明验收标准的合理性。 ●Due to inter-subject variability, the products to be compared should be applied on the same subject. Additionally, a negative control that is non-equivalent to the comparator product should also be included to demonstrate the discriminatory power of the method. It is recommended to blind the investigator responsible for formulation application and tape stripping to minimise risk of bias. 由于受试者之间的差异,应将待比较的产品应用于同一受试者。此外,还应包括与对照品不等同的阴性对照,以证明该方法的歧视性。建议让负责配方应用和胶带剥离的研究人员盲试验,以最大限度地减少偏倚风险。 ●The dosing amount should be determined based on the SmPC. During the pilot study, the dosage and area of dose application should be verified to achieve a quantifiable mass of active substance in the SC. The dosing technique, blinding and randomisation procedures should also be established. 剂量应根据SmPC确定。在试点研究期间,应验证剂量和剂量应用面积,以在SC中获得可量化的活性物质质量。还应建立剂量技术、盲法和随机化程序。 ●A single dose approach should be followed, i.e. skin stripping is performed after a single application of the test and comparator products. 应采用单剂量方法,即在单次应用测试和对照产品后进行皮肤剥离。 ●It is necessary that the products are compared at two time points (one uptake, one clearance) for each subject. The optimal uptake and clearance times depend on the characteristics of the drugs and products and should be determined during the pilot study. Ideally and when relevant, the uptake time should be sufficiently long for the drug to have attained the diffusional steady state. This can be established by testing at multiple uptake times and from which time the mass of drug recovered from the SC remains constant. The clearance time should be long enough to allow measurable transfer of drug from the SC into the viable skin (and beyond) but should not exceed 48 hours to avoid any skin desquamation effect. The clearance time providing at least a 25% decrease in the mass of drug recovered from the SC with respect to that at the uptake phase is preferred. In all cases, the sampling times should be carefully  considered and justified. 有必要在两个时间点(一次吸收,一次清除)对每个受试者的产品进行比较。最佳吸收和清除时间取决于药物和产品的特性,应在试点研究期间确定。在相关的理想情况下,吸收时间应足够长,以使药物达到扩散稳定状态。这可以通过在多次摄取时间进行测试来确定,从该时间起,从SC中回收的药物质量保持恒定。清除时间应足够长,以允许可测量的药物从SC转移到活的皮肤中(或更久),但不应超过48小时,以避免任何皮肤脱屑影响。相对于摄取阶段,从SC回收的药物质量提供至少25%减少的清除时间是优选的。在所有情况下,应仔细考虑并证明取样时间的合理性。 ●The drug product should be removed from the skin surface after the specified uptake time. The cleaning procedure should be established to ensure that the residual formulation is efficiently removed from the treatment sites before stripping. 药物产品应在规定的摄取时间后从皮肤表面移除。应制定清洁程序,以确保在剥离前有效地从处理部位去除残留制剂。 ●The adhesive tape chosen should meet the following requirements: a) does not lose mass when applied and rubbed against the skin surface; b) minimal weight loss and gain during storage; c) the drug is readily extracted from the SC adhered to the tape; d) the adhesive or other components of the tape do not interfere with the analytical quantification of the drug; and e) the adhesive power should be such that the majority of the SC is removed with a sufficiently low number of tapes (e.g. not more than 30 tapes). 选择的胶带应满足以下要求:a)在应用和摩擦皮肤表面时不会失去质量;b) 储存期间的最小化重量损失和增加;c) 药物容易从粘附在胶带上的SC中提取;d) 胶带的粘合剂或其他成分不干扰药物的分析定量;以及e)粘合力应使得大部分SC用足够低数量的胶带(例如不超过30条胶带)去除。 ●The TS procedure followed must ensure that most of the SC (≥75%) is sampled for each skin site. The minimum and maximum number of tapes should be established based on the TEWL (or other relevant) criteria, e.g. eight-fold increment over baseline value, safety stop value. 遵循的TS程序必须确保对每个皮肤部位的大部分SC(≥75%)进行采样。胶带的最小和最大数量应根据TEWL(或其他相关)标准确定,例如比基线值增加8倍,安全停止值。 ●Most commonly, the drug is first extracted from the tapes then quantified in the extraction solvent(s). Alternative methods of extraction/quantification may be used if justified. Satisfactory efficiency should be demonstrated for the proposed extraction method.最常见的是,首先从胶带中提取药物,然后在提取溶剂中定量。如果合理,可使用其他提取/定量方法。应证明所提出的提取方法具有令人满意的效率。 Detailed standard operating procedures should be prepared for the conduct of TS studies to ensure precise control of dosing, cleaning, stripping, extraction, quantification and other study variables or potential sources of experimental bias. The inclusion/exclusion criteria should be pre-defined and clearly stated in the protocol. 在进行TS研究时,应制定详细的标准操作程序,以确保精确控制剂量、清洗、剥离、提取、定量和其他研究变量或实验偏差的潜在来源。纳入/排除标准应预先定义,并在方案中明确说明。 The following study design is recommended for TS studies. The final protocol developed for each specific case should be justified. TS研究建议采用以下研究设计。应该针对每种具体情况制定合理的最终方案。 ●Subjects – TS studies should be performed in healthy volunteers. The subjects should be screened for suitability in line with the principles of bioequivalence studies. 受试者–TS研究应在健康志愿者中进行。应根据生物等效性研究的原则筛选合适的受试者。 ●Treatment area –healthy skin of the volar forearm areas sufficient to accommodate at least six application sites per forearm. Skin integrity should be verified e.g. by TEWL measurement. The same number of application sites should be assigned to each forearm; 治疗区域–前臂掌侧区域的健康皮肤,每个前臂至少有六个应用部位。应通过TEWL测量进行皮肤完整性验证。应为每个前臂分配相同数量的应用部位; ●Number of subjects – the choice of the number of subjects should be justified based on the variability estimated from the pilot studies and demonstrated to be statistically relevant. A minimum of 12 subjects should be used to demonstrate equivalence; 受试者数量——受试者的数量选择应根据试点研究估计的变异性进行证明,并证明其具有统计学意义。应使用至少12名受试者来证明等效性; ●Number of replicates – at least two application sites per product (test, comparator and a negative control) per forearm. One forearm should be used for uptake samples and the other for clearance; 重复次数–每个前臂每个产品至少有两个应用部位(测试、对照和阴性对照)。一侧前臂用于吸收样本,另一侧用于清除; ●The products should be applied at pre-determined doses (±5%) and spread evenly over the entire demarcated application sites. Blank samples should be collected from the adjacent areas to verify the absence of background levels of drug or other compounds that may interfere with the quantification of drug in the treated SC; 产品应以预定剂量(±5%)涂抹,并均匀分布在整个划定的涂抹部位。应从相邻区域采集空白样品,以验证是否存在可能干扰治疗SC中药物定量的药物或其他化合物的背景水平; ●The application sites should be randomised to avoid bias. The application time should be staggered to allow time for S.C. sampling; 用药位点应随机,以避免选择偏向性。应用时间应错开,以留出S.C.取样时间; ●Un-occluded conditions, unless occlusion is recommended in the product information, or otherwise justified e.g. to prevent inadvertent removal of formulation. 非封闭条件,除非产品信息中建议封闭,或以其他方式证明封闭是合理的,例如防止无意中移除制剂。 ●The formulation should be removed from all treatment sites (uptake and clearance) at the end of the uptake phase. The total cleaning time should be minimised to avoid any artefacts due to further drug diffusion. Skin integrity of the treated area should be checked before stripping; 在吸收阶段结束时,应从所有治疗部位(吸收和清除)移除制剂。应尽量缩短总清洗时间,以避免因药物进一步扩散而产生任何假阳性。剥离前应检查处理区域的皮肤完整性; ●The ‘uptake’ sites should be tape-stripped immediately after formulation removal. The ‘clearance’ sites should be tape-stripped at the pre-defined clearance times; “吸收”部位应在移除制剂后立即用胶带剥离。“清理”部位应在预定义的清理时间进行胶带剥离; ●The exact number of tapes required should be determined based on TEWL measurements of the stripped area and the stopping criteria established from the pilot study; 所需胶带的确切数量应根据剥离区域的TEWL测量值和试点研究确定的停止标准确定; ●The mass of SC removed per tape should be determined using a gravimetric method by weighing the tapes strips before and after stripping. Alternative methods of quantification of the SC can be used if suitably described and justified; 每个胶带上去除的SC的质量应通过在剥离前后称重胶带的重量来确定。如果有适当描述和合理理由,可以使用替代性的SC量化方法; ●All stripped tapes collected from each treatment site should be analysed. The first two tapes should be analysed separately from the remaining tapes, so their contribution to the total amount of drug recovered can be eva1uated. To enhance analytical detectability, the subsequent tapes can be combined in groups (e.g. each group containing the required minimum content of SC) for extraction. The total mass of drug in the SC should be calculated as the sum extracted from all tape strip samples. The mass balance, including the drug content removed from the surface by cleaning should be determined for each treatment site. The overall recovery of 90-110% would be acceptable without justification; larger variation should be fully explained. 应分析从每个处理部位收集的所有剥离胶带。为评估它们对回收药物总量的贡献,前两个胶带应与剩余胶带分开分析。为了增强分析检测能力,可以将后续的胶带进行分组(例如,每组含有所需的最低含量的SC)提取。SC中药物的总质量应计算为从所有胶带样本中提取的总和。应确定每个治疗部位的质量平衡,包括通过清洁从表面去除的药物含量。一般情况下,可接受的总回收率是90-110%;如果出现较大的偏差,应充分解释。 Cleaning the skin surface at the end of the application period prior to tape-stripping is important and must be capable of removing excess formulation (i.e. unabsorbed drug) efficiently without inadvertently ‘driving’ the drug into the barrier. The cleaning procedure usually involves quickly and gently wiping the skin with dry/wet tissue, cotton swabs and/or fresh alcohol wipes. The cleaning components should be known not to influence drug diffusion into and through the SC. A careful eva1uation and validation of an efficient skin cleaning procedure should be performed prior to the pivotal study, e.g. by demonstrating satisfactory recovery (>90%) of the drug formulation removed from the skin surface and the negligible drug content (<10%) recovered by stripping the cleaned skin immediately after application. Other ways of validation may be used if suitably justified. 在胶带剥离前,非常重要的是在应用期结束时进行皮肤表面的清洁,必须能够有效地去除多余的制剂(即未吸收的药物),而不会无意中“驱使”药物进入屏障。清洁程序通常包括用干/湿纸巾、棉签和/或新鲜酒精湿巾快速轻轻擦拭皮肤。应该知道清洁组件不会影响药物扩散进入和通过SC。在正式研究之前,应仔细评估和验证有效的皮肤清洁程序,例如,通过证明从皮肤表面去除的制剂有令人满意的回收率(>90%)和通过在施用后立即剥离清洁的皮肤而回收的可忽略的药物含量(<10%)。如果能证明合理性,可以使用其他验证方法。 The bioanalytical method employed for drug quantification in the tape strips should be validated. The efficiency of the extraction procedures (including extraction of tape strips in groups) should be established and demonstrated as consistent prior to the pivotal study. 应验证用于胶带中药物定量的生物分析方法。在正式研究之前,应确定提取程序的效率(包括成组提取胶带),并证明其一致性。 The discriminatory power of the TS method should be demonstrated for batches with different quality attributes (a negative control), such as a drug formulation with ±50% of the proposed product strength, that is shown to be statistically different and non-equivalent to the test and comparator products. The analytical methods for determining the content of active substance in the tape-stripped SC should be validated according to the Guideline on Bioanalytical Method Validation. 对于具有不同质量属性的批次(阴性对照),应证明TS方法的区分力,例如具有±50%拟议产品强度的药物配方,其与试验和对照产品在统计学上不同且不等效。根据《生物分析方法验证指南》,测定胶带剥离SC中活性物质含量的分析方法应进行验证 Data from all subjects should be reported and the validity and variability of the results should be discussed. All treated subjects and application sites should be included in the statistical analysis. The permitted reasons for exclusion must be pre-specified in the protocol. Data exclusion based on statistical analysis or for kinetic reasons alone is not acceptable. 应报告所有受试者的数据,并讨论结果的有效性和变异性。统计分析中应包括所有受试者和应用部位。必须在协议中预先规定允许的排除理由。不能仅基于统计分析或动力学原因排除数据。 For each product, the thickness of SC removed, the number of tapes used and final TEWL value measured at both uptake and clearance times should be reported. Any differences in these parameters between the test and comparator products should be discussed with respect to equivalence. 对于每种产品,都应报告去除的SC厚度、使用的胶带数量以及在吸收和清除时间测量的最终TEWL值。应在等效性方面对测试产品和对照产品之间这些参数的任何差异都进行讨论。 A plot of drug content profile in the SC should be presented for each application site, e.g. the drug content of each SC tape strip (single or grouped) versus SC depth. 应为每个应用部位绘制SC中的药物含量分布图,例如每个SC胶带条(单个或成组)的药物含量与SC深度的关系。 The duplicated measurements for each product in each subject should be averaged (population geometric mean) prior to analysis. 在分析之前,应对每个受试者中每个产品的重复测量值进行平均(总体几何平均值)。 For the comparison of products, the equivalence parameters: mass of drug recovered from the uptake (Muptake) and clearance (Mclearance) sites, should be statistically compared, according to the Guideline on the Investigation of Bioequivalence (CPMP/EWP/QWP/1401/98 Rev. 1/ Corr ). 对于产品的比较,应根据《生物等效性研究指南》(CPMP/EWP/QWP/1401/98 Rev.1/Corr)对等效参数:从吸收(Muptake)和清除(Mclearance)部位回收的药物质量进行统计比较。 The acceptance criteria for equivalence parameters (Muptake) and (Mclearance) are: ●The 90% confidence interval for the ratio of means of the test and comparator products should be contained within the acceptance interval of 80.00- 125.00%, unless justified. 除非有正当理由,试验和对照产品平均值比率的90%置信区间应包含在80.00-125.00%的验收区间内。 ●Wider 90% confidence interval limits, to a maximum of 69.84 – 143.19, may be accepted in the case of high variability observed with low strength and limited diffusion drug products, and if clinically justified. The procedure in the Guideline on Investigation of Bioequivalence,  “Section 4.1.10 Highly variable drugs or drug products” should be followed. 如果在低强度和有限扩散的药物产品中观察到高变异性,并且在临床证明的情况下,可以接受更宽的90%置信区间限,最大值为69.84–143.19。应遵循《生物等效性调查指南》第4.1.10节“高变异药物或药物产品”中的程序。 In addition, for the test to be valid: 此外,为了使测试有效 ●The acceptance criteria for equivalence parameters (Muptake) and (Mclearance) 等效参数(Muptake)和(Mclearance)的验收标准 ●The 90% confidence interval for the ratio of means of the test and negative control products should be entirely outside the interval of 80.00- 125.00%. 试验和阴性对照产品平均值比率的90%置信区间应完全超出80.00-125.00%的区间。●The 90% confidence interval for the ratio of means of the comparator and negative control products should be entirely outside the interval of 80.00- 125.00%.对照产品和阴性对照品平均值之比的90%置信区间应完全超出80.00-125.00%的区间。●The 90% confidence interval for the ratio of means of the test product clearance (Mclearance) and (Muptake) comparator products should be entirely below 1.0.试验产品清除率(Mclearance)与对照产品(Muptake)平均值之比的90%置信区间应完全低于1.0。 ●The 90% confidence interval for the ratio of means of the comparator product clearance (Mclearance) and (Muptake) comparator products should be entirely below 1.0. 对照产品清除率(Mclearance)与对照产品(Muptake)平均值之比的90%置信区间应完全低于1.0。 The overall conclusions of the study should be provided. This should be supported by a sound scientific discussion and interpretation of the TS data. 应提供研究的总体结论。这应该得到对TS数据的合理科学讨论和解释的支持。

查看更多
2023-02-17

使用ivrt研究局部作用药物的体外体内相关性

美国食品和药物管理局(FDA)将体外-体内相关性(IVIVC)定义为“描述剂型体外特性与相关体内反应之间关系的预测数学模型”,IVIVC一直是药剂学领域的热点,制药同仁致力于开发用于预测药物产品临床性能的体外系统和模型。FDA于1997年发布了《IVIVC口服缓释剂型开发、评估和应用的监管指南》,尽管尚未发布针对局部药物产品的IVIVC监管指南,但工业界已应用FDA《ER口服剂型IVIVC指南》中的相关原则为半固体制剂产品开发IVIVC模型,例如通过药物体外释放特性(IVRT)、体外渗透试验(IVPT)获得的稳态通量、扩散率和皮层分配系数特性、流变特性(粘度、延展性等)等体外参数;通过胶带剥离(TS)获得的角质层(SC)中药物的量(即皮肤药代动力学(DPK)研究),从血管收缩试验(VCA)获得的效应曲线下面积(AUEC)(药效学(PD)研究),基于以上数据开发局部应用药物产品的IVIVC。《IVIVC口服缓释剂型开发、评估和应用的监管指南》对ER口服剂型的IVIVC指南定义了四个相关级别: A级代表体外和体内概况之间的点对点关系。尽管这些相关性通常是线性的,但非线性相关性也是可以接受的。它被认为是信息量最大的,也是在获得生物豁免方面FDA接受的唯一IVIVC水平; B级相关性利用统计矩分析原理。将平均体外溶出时间(MDTin体外)与平均体内停留时间(MRTin体内)或溶出时间进行比较。考虑到各种体内释放曲线可能导致相同的MRTin体内或MDTin体内,B级相关性不被认为是点对点相关性,这种相关性不一定反映实际的体内血浆分布,这可能导致预测性不足。 C级涉及溶出参数(例如T50%、T90%)与药代动力学参数(如血浆峰值浓度(Cmax)、达峰时间(Tmax)或曲线下面积(AUC))之间的单点相关性。因单点分析不能恰当地反映血浆浓度-时间曲线的完整形状,它可能不足以预测体内药物性能,但这个对于解释制剂的体内性能至关重要,在配方开发的早期阶段选择试验配方时,可以采用这种相关性。 多个C级相关性将多个溶出时间点与一个或多个药代动力学参数(例如Cmax、Tmax或AUC)相关,应包括至少三个溶解时间点(溶解曲线的早期、中期和晚期)以建立这种相关性。多重C级相关性与A级相关性一样有用。此外多重C级相关性的发展也表明建立更优选的A级相关性是可行的。 此外,还可以建立比较体外和体内释放曲线(D级)的次序相关性,它有助于在产品开发的早期阶段选择配方和工艺变量。然而这种类型的相关性仅提供定性信息,因此不收录在FDA的IVIVC指南中。上一期我们分享了如何运用IVRT技术进行研究制剂的处方与工艺,具体参考《如何使用鉴别性体外释放试验(IVRT)方法评估不同来源制剂的差异》。本期参考Seeprarani Rath的研究报告,我们将体外释放测试(IVRT)数据与甲硝唑(metronidazole,MTZ)霜应用于健康人体参与者皮肤后的胶带剥离(TS)数据进行关联,运用IVIVC进行半固体制剂的体外研究,预测甲硝唑的体内性能,供行业同仁参考。 1.1.物料 含有0.75% MTZ的Metroceme®(德国,杜塞尔多夫,Galderma Laboratorium GmbH)用作参比MTZ乳膏,与参比产品相比,含有相同剂量强度(0.75%)、少25%(0.56%)和多26%(0.95%)MTZ的特制乳膏用作为仿制产品:T1、T2和T3 1.2.实验方法 IVRT分析方法见表1:该方法应该是已进行充分验证后再使用,具体参考《如何使用鉴别性体外释放试验(IVRT)方法评估不同来源制剂的差异》 表1 IVRT测试方法 胶带剥离(TS)测试方法 在TS研究中,使用10名23岁至31岁(平均27岁)的健康参与者(4名男性,6名女性),同时评估所有产品。每个参与者前臂的掌侧部分被划分为五个采样点(2×2cm)。其中四个位点用于产品应用(Metroceme®和仿制产品T1、T2和T3),每个臂上的一个位点被指定为空白。将约15mg的每种霜施用于每个施用部位。在60分钟的施用时间后,移除乳膏,并使用20个预先称重的胶带依次剥离每个部位。通过在剥离后立即重新称量各个胶带条来确定去除的角质层(SC)的量。所有药物应用部位在参与者之间随机分配。UPLC法用于测定相关胶带中MTZ的量。通过在空白部位进行的经表皮失水(TEWL)测量,确定每个参与者的角质层厚度。每个参试者的每只手臂上分别使用一种参比制剂和三种仿制制剂。 ARC与AUC数据处理 从每单位面积释放的累积药物量与时间平方根(以分钟为单位)的曲线斜率获得的释放速率被称为表观释放常数(Apparent release constants,ARC)。我们使用IVRT获取参数ARC,和TS参数曲线下面积(AUC)关联得出的IVRT和TS数据,曲线下面积(area under the curve,AUC)是从每条胶带的药物量与相对SC深度的图中获得的。使用分别在IVRT和体内TS研究期间观察到的参比和仿制产品的ARCs和AUC,建立了次序关系。 此外,根据相应的AUC绘制相关ARCs。所得数据产生线性关系,然后使用从该图中获得的方程基于各自的ARCs预测所有仿制产品的AUC。此外,这些体外和体内参数(即ARC和AUC)的BE限值(0.8–1.25)是根据试验产品和参比产品之间≤20%差异的监管接受标准计算的。 IVRT测试数据见表2 表2 IVRT测试释放速率数据(n=6) TS实验测试数据数据见表3 表3TS实验测试数据(n=10) 图1描述了体外ARC和体内测量AUC之间的次序关系。尽管直方图显示T1的ARC略低,但等级顺序与强度基本一致。可以清楚地看到,参比产品和T1的强度相似,而T2的强度低于参产品,T3的强度高于参比产品,分别与较低和较高的强度相关。 表3 从IVRT中取得的ARC值获取预测AUC值 基于预测的AUC值与实际观察值相似(CV<10%)。BE体外和体内参数的下限和上限见表2。基于上述数据,可以看出,为了使用体外研究论证BE,当比较含有MTZ的仿制产品和参比产品时,ARC值需要在30.50和47.67µg/cm²/min½之间。 表4 AUC和ARC的BE限值 各种制剂的体外和体内参数ARC和AUC的次序关系与各相关MTZ制剂的强度一致。根据FDA IVIVC指南的建议,使用参比产品和三种仿制产品建立了体外(ARC)和体内(AUC)参数之间有意义的C级IVIVC。参比产品和T1(0.75%MTZ)仿制产品观察AUC值在BE的接受范围内(0.8–1.25)。观察AUC与预测AUC值的接近程度表明开发的IVIVC方法有可能根据IVRT结果预测MTZ的体内行为。使用IVRT和TS数据获得局部MTZ霜产的IVIVC,以及为其他局部产品的生物豁免的可能铺平道路。甚至可以进一步使用参数(如IVRT运行期间不同时间点渗透的累积量与AUC或体内渗透总量)建立多个C级相关性,进而使用点对点关系获得A级相关性。 IVIVC是根据IVRT研究获得的ARCs与TS研究获得的AUC数据成功开发的。使用这些相关性,可以从IVRT研究产生的数据中获得对可能临床表现的预测,这些数据对应于TS研究AUC值所指示的体内数据。所得数据表明,T1可被视为参考值,因为ARC值为32.89±1.60µg/cm²/min½,在30.50至47.67µg/cm²/min½的范围内,AUC在68.33至92.02µg/%的范围内表皮深度,对应于0.8–1.25的BE验收限值。然而,T2和T3被认为是非生物等效的,因为ARC值27.42±0.99和51.20±0.60µg/cm²/min½对应于预测AUC值64.07和96.89µg/%表皮深度超出BE验收限值。本研究表明,IVRT数据可用于预测在成功开发合适的IVIVC方法后,MTZ霜的生物等效性。 本期分享给大家初步展示了IVRT在IVIVC中的作用,文中所展示的胶带剥离术(TS)相信也是大家非常感兴趣的内容点,下一期的分享,我们将继续给大家展现角膜层(S.C.)取样(胶带剥离)详细具体内容,请继续关注锐拓,您的关注是我们前进的动力。 参考文献:《In Vitro–In Vivo Correlations (IVIVC) for Predicting the Clinical Performance of Metronidazole Topical Creams Intended for Local Action》 相关阅读:《如何使用鉴别性体外释放试验(IVRT)方法评估不同来源制剂的差异》 《FDA IVPT 测试 工业指南翻译稿》 实验系统 实验仪器:锐拓 RT800 自动取样透皮扩散系统

查看更多
2023-02-08

如何使用鉴别性体外释放试验(IVRT)方法评估不同来源制剂的差异

体外释放试验(IVRT)为评价半固体制剂的药物释放提供了一种有效的方法,在上一期我们分享了基于FDA IVRT测试 工业指南(相关阅读:FDA IVRT测试工业指南翻译稿)法规要求的理解。 为了增进对该法规指南的直观操作体验,锐拓仪器参考Potiwa Purazi等的《Assessment of “Sameness” and/or Differences between Marketed Creams Containing Miconazole Nitrate Using a Discriminatory in vitro Release Testing (IVRT) Method》的数据,并按照FDA的SUPAC-SS指南中的“相同性”验收标准对两种已上市的非专利产品进行了测试和评估,以此展示IVRT工具如何用于半固体制剂体外释放研究及其后续的处方筛选工作,提供一个模拟真实运用场景的操作实例给广大研究同仁参考。 1.1.物料 1.1.1.化学试剂与参考标准品 氢化可的松(HC)标准品 硝酸咪康唑(MCZ)标准品 硝酸益康唑(ECZ)标准品:内标物 已上市的氢化可的松霜Emo-Cort 1%:GlaxoSmithKline Inc,用于性能验证测试(PVT)。 参比制剂Daktarin®霜(2%):Janssen Pharmaceutica,用作参考产品,以开发和验证IVRT方法。三种含有1%、2%和4%MCZ的特制霜配方也用于确认IVRT方法的灵敏性、特异性和选择性。 经批准且已上市的仿制配方Dermazole®霜剂(2%):Sandoz公司,与参比制剂进行比较,以证明该方法用于评估“相同性”和/或检测差异。 经批准且已上市的仿制配方Covarex®霜剂:与参比制剂进行比较,以证明该方法用于评估“相同性”和/或检测差异。 1.1.2.HPLC 色谱法 使用液相色谱法进行测试样品的含量检测,用于分析PVT和IVRT样品的HPLC系统配备了Waters Alliance 2695型分离模块,该模块包括在线脱气模块、自动取样器和光电二极管阵列(PDA)检测器 Waters®Empower 3软件用于数据采集和处理。使用METTLER®AE 163型分析天平对参考标准品和霜进行称重。P100和P1000微量移液管用于转移和稀释标准溶液和样品溶液,液相色谱测试条件见下表: 表1 液相色谱测试条件 1.1.3.IVRT 测试系统 使用基于Franz扩散池原理的透皮系统进行方法开发,膜暴露表面积为1.767 cm²,供体室和受体室由选定的合成膜隔开。 1.2.方法 1.2.1.HPLC 方法验证 根据国际协调委员会(ICH)关于线性和范围、精密度、重复性、准确度、特异性以及确定的定量限(LOQ)和检测限(LOD)的指南,验证IVRT样品定量的HPLC方法。 1.2.2.测试设备的机械验证  作为机械验证的一部分,评估了VDC的容量和直径、接受介质的温度、搅拌速度、上样的样品体积以及VDC系统所处的环境条件。根据USP<1724>要求对VDC进行机械参数确认。 验证中需要计算单位面积采样时间释放量所需的每个VDC的孔的直径和容量分别通过测量长度和重量确定。使用重量法评估每个VDC的容量。用游标卡尺测量孔的直径确定膜暴露面积。 温度保持在32±1°C,以模拟皮肤温度并避免扩散系数的变化。在用纯化水填充VDC并平衡30分钟后,用经过校准的数字温度计测量六个VDC中的接收介质温度,确认温度达到预设要求。 使用激光转速表在500rpm下评估六个VDC之间的搅拌速度准确性与均匀性 所有物理参数测量3次。根据预定义的验收标准,计算平均值(x)和变异范围(V),以确定六个VDC的准确性和测试池之间变异性。机械验证的验收标准根据USP通用<1724>。 1.2.3.性能测试 (PVT) 使用1%氢化可的松(HC)进行PVT测试,测试条件如下: 表2 PVT测试条件 1.2.4.硝酸咪康唑(MCZ)接收液研究 评估MCZ在pH 4.5接收液(50/50 v/v)(乙醇:0.05 M磷酸盐缓冲液)中的溶解度,一式三份。称量药物并放入空VDC中,加入接收液以获得饱和浓度。将MCZ溶液在32±0.5℃下搅拌6小时。然后停止搅拌,样品静置过夜。提取上清液的等分试样,过滤、稀释并分析,以确定溶解的MCZ的浓度。理想情况下,在整个IVRT过程中,药物在接受液中的溶解度应大于药物最大预期浓度的10倍。 1.2.5.膜筛选实验 使用各种合成膜进行膜筛选,例如Magna Nylon、Tuffryn,乙酸纤维素,纤维素酯和Strat-M。通过在32±1°C下,将每个单独的膜浸入含有250µg/mL MCZ的10mL测试溶液中,在pH 4.5接受液(50/50 v/v)(乙醇:0.05M磷酸盐缓冲液中,以一式两份的方式研究MCZ在各种膜上的结合。平行评估了一组无膜对照MCZ溶液。可能存在因为药物与膜的结合和/或其在接收液中的稳定性,为了确定MCZ含量的任何变化,使用上述HPLC方法测定所有测试溶液的浓度。此外,进行了IVRT试验,以比较两种膜(尼龙膜和Tuffryn膜)的释放情况。 1.2.6.硝酸咪康唑(MCZ)IVRT 方法设计 硝酸咪康唑(MCZ)设计的测试条件见表3: 表3  硝酸咪康唑(MCZ)IVRT方法设定                  1.2.7.释放速率计算 使用Higuchi模型,假设存在完美漏槽条件且在伪无限剂量下,使用方程(1)确定释放率。考虑到由于替换取样量而导致的接收液稀释,并使用方程(1)计算不同取样时间下接收液中MCZ的浓度(Cn)。                        式子中, Qn : 单位面积在时间(n)释放的量,单位为µg/cm² Cn :不同取样时间下接收液中的药物浓度(n),单位:µg/cm3 Vs :样品体积(cm³) Vc : 扩散池体积(cm²) Ac :膜暴露面积(cm²) 释放速率则为Qn与时间平方根曲线的回归线斜率,参见USP< 1724> 1.2.8.IVRT方法验证 线性、精密度和重现性 使用参考产品Daktarin®霜(2%)进行了三次IVRT试验,在不同天测试(n=6),以确定线性、精密度和重现性。为了符合Higuchi模型的假设,单位面积的释放量应与时间的平方根呈线性关系。 通过使用方程(2),从获得的18个释放率中估算实验内和实验间的变异性来确定精密度和重现性 式子中, µ = 估计平均释放速率  σ1 : 实验间标准偏差 σ2 :实验中标准偏差 灵敏度、特异性和选择性 IVRT方法的灵敏度、特异性和选择性,在VDC(n=6)的三次IVRT试验中进行了评估,每个VDC使用含有1%、2%和4%MCZ的霜,这些霜是特别配制和临时制备的。通过测定释放速率随MCZ浓度的变化,验证IVRT方法的灵敏度,并通过评估释放速率与测试产品中MCZ浓度的比例来表征特异性。以释放速率为因变量,以MCZ浓度为预测变量的线性回归模型用于估计确定相关系数(R²)。 为了测试IVRT方法是否有选择性,以准确辨别产品性能差异,使用USP< 1724>章节中描述的统计方法,将含有2%MCZ的霜与具有较高和较低MCZ浓度的测试产品进行比较。此外,IVRT方法准确证明“相同性”的能力,通过Daktarin®霜(2%)与自身的两两比较进行测试。 耐用性 分别在30°C和34°C下评估了该方法在标称温度(即32°C)下对微小波动(±2°C)的耐用性。 剂量消耗 为了确保IVRT实验期间没有过量的剂量消耗,能够使用线性、精密度和重现性测试的结果,应计算产品的剂量消耗,确保为伪无限剂量,伪无限剂量以回收率Recovery表示,使用方程(3)计算回收率。 回收率Recovery=最后一个时间点接受液中MCZ的累积量/产品强度×施加剂量   (3) 1.2.9.评估含有2%MCZ的霜之间的“相似性”/差异 比较IVRT研究按照FDA的SUPAC-SS指南进行。测试产品,即两种经批准和上市的仿制配方,Dermazole®霜(2%)和Covarex®霜(2%),与参考产品Daktarin®霜(2%)进行了比较。根据SUPAC-SS指南,将VDC随机分配给测试(T)和参考(R)产品。将从R和T释放的药物的单个累积量与时间的平方根作图。使用非参数统计方法Mann-Whitney U检验来计算R和T之间斜率比率的90%置信区间(CI)。由于IVRT实验期间预计会出现一些异常值(例如,由于气泡形成),因此使用了能消除该影响的Mann-Whitney U检验。 1.2.10.IVRT方法应用 使用两种不同浓度(0.5%和1%)的MCZ霜,通过用含水霜稀释Daktarin®霜(2%)来研究IVRT方法检测制剂差异的能力。将这些稀释产品与市售Daktarin®霜(2%)产品进行比较。 2.1.HPLC 方法验证 HPLC方法的验证参数符合ICH指南规定的预定义验收标准,HPLC方法验证的结果见表4: 表4 HPLC方法验证结果 机械性能验证 VDC的机械性能符合USP 1724中对于机械性能的要求。 2.2.性能确认测试 (PVT) PVT实验符合预定义的验收标准,结果如表5所示。所得数据证实了IVRT系统的适用性和重现性。 表5 PVT数据 2.3.硝酸咪康唑(MCZ)接收液研究 在对缓冲液的不同pH和摩尔浓度进行初步实验后,选择了50%乙醇和50%0.05M磷酸盐缓冲液(pH 4.5)作为IVRT的接收液,因为MCZ在该组合物中高度可溶。MCZ在接受液中的溶解度为3671 µg/mL(±60.24),比方法验证实验期间获得的样品中的最高测量浓度(150µg/mL)高10倍以上,确保满足漏槽条件。 2.4.滤膜筛选实验 尼龙、醋酸纤维素和Tuffryn膜的平均回收率分别为98.40%、95.10%和98.45%,表明其与MCZ结合可忽略不计。因此,膜不太可能作为MCZ的限速屏障。相反,Strat- M和纤维素酯膜显示出低的MCZ回收率,不符合±10%的可接受范围。 实验6小时后,使用尼龙和Tuffryn膜对Daktarin霜(2%)中MCZ的体外释放进行比较,结果显示释放率分别为86.64 µg/cm²/min½和76.68µg/cm²/min½。综合考虑释放率、可用性和经济性,选择了成本较低的尼龙膜作为滤膜。 2.5.IVRT方法验证 线性、精密度和重现性 当R2>0.9时,确认线性。根据SUPAC-SS指南,使用线性回归计算3次试验(n=6)的18个释放率。所有释放速率均显示单位面积释放到接收液中的药物量(µg/cm2)与时间平方根之间的线性关系(R2>0.99)。 变异性参数等于σ1=36.14,σ2=27.56,µ=57.86µg/cm²/min½,导致实验间变异性的变异系数为10.39%,实验内变异系数为9.07%。CV<15%证实了可接受的精密度和重现性。 灵敏度 平均释放率随MCZ浓度的增加而增加:对于含有1%、2%和4%MCZ的霜,平均释放率分别为14.56µg/cm²/min½(±4.84)、39.92µg/cm²/min½(±6.00)和73.55µg/cm2/min ½(±3.78)。则认为该方法是灵敏的,因为含有1%MCZ的霜产生的平均释放率显著低于含有2%MCZ的霜,而含有4%MCZ的霜产生的平均释药率最高。 特异性 观察到MCZ浓度与释放速率之间的线性关系(R2=0.9935)(图1)。因为测试产品的平均释放率与MCZ浓度成比例增加,证实了IVRT方法的特异性。  选择性 2%MCZ霜与1%和4%MCZ霜的配对比较,表明改方法能够准确识别“不同”的产品,而参考产品与自身的比较则证实了“相同性”的确定(表6)。(下表改为表7) 表6 MCZ乳膏的配对比较 耐用性 使用不同温度(即30°C和34°C)进行IVRT试验的平均释放率分别为55.14µg/cm²/min½(±8.15)和72.53µg/cm²/min½(±9.00)。平均释放率与在标称温度(32°C)下进行的IVRT试验(即59.30µg/cm²/min½(±7.27))得出的平均释放率之间的偏差没有超过15%,因此,证实了开发的IVRT方法对实验过程中温度微小波动的耐用性。 剂量消耗 为测试线性度、精密度和重现性而进行的IVRT试验中观察到的回收率分别为<30%,即27.11%(±2.00)、28.20%(±2.41)和29.75%(±3.26),这表明在既定的实验条件下不可能出现任何剂量耗尽,满足伪无限剂量要求。 2.6.评估含有2%MCZ的霜之间的“相似性”/差异 图2和表7分别显示了参考产品Daktarin霜(2%)与两种经批准和上市的仿制制剂Dermazole®霜(2%)和Covarex®霜的释放曲线和成对比较。 表7 参考产品与仿制制剂的配对比较 与参考产品Daktarin霜(2%)相比,Dermazole®霜的90%置信限(2%)落在SUPAC-SS验收标准(75–133.33%)的范围内,确认了两种霜之间的“相同性”,而与参考产品Daktarin软膏(2%)以及Dermazole®霜相比,Covarex®霜完全超出了可接受范围,表明这些霜不具有药物等效性。 局部剂型性能标准的差异,可以通过考虑Q1、Q2和Q3来解释,Q1、Q2和Q3分别指定性和定量数值以及剂型微观结构。使用Covarex®霜观察到的药物释放曲线的差异可能是由于赋形剂的差异(Q1/Q2)。Covarex®霜含有咪唑烷基脲(0.2%)、尼泊金甲酯(0.15%)和尼泊金丙酯钠(0.15%),而Daktarin®和Dermazole®霜含有苯甲酸(0.2%)。辅料的这些差异可能会改变药物制剂的物理化学性质、皮肤渗透性、溶解度和热力学活性以及制剂的Q3属性。 由于制备方法的不同,检测配方差异的研究结果如图3所示 Daktarin®霜中MCZ的释放率(2%)明显高于1%和0.5%MCZ霜(图3)。这可能是由于Q3的差异,即与物质的微观结构和排列的差异,以及Q1/Q2的差异有关,图3所示的释放曲线表明,IVRT系统可以区分使用不同规格,不同制剂工艺的制剂。 根据美国食品和药物管理局阿昔洛韦软膏和霜指南草案、SUPAC -SS非无菌半固体剂型指南和USP通用章节的建议,对已批准和上市的外用MCZ霜进行体外评价。一种仿制霜Dermazole®霜(2%)与参考产品Daktarin®霜(2%)表现出“相同”,而另一种仿制软膏Covarex®霜(%),其MCZ释放率不在75–133.33%的接受标准范围内,则认为不具有体外等效性。两种仿制霜之间的比较,表明它们在体外并不等同。 总之,开发良好的IVRT方法,能够准确区分不同规格产品的体外释放率,这可以反映产品性能的相似性和/或差异。此外,结果表明,IVRT方法还具有检测配方变化的能力,这可能是由于Q1/Q2/Q3不同所造成的。经验证的IVRT系统提供了证据,方法能够准确评估仿制的配方外用霜产品中MCZ的释放。结果证实了IVRT方法适用于以可靠和可重复的方式,测量局部皮肤霜中MCZ的释放率,并为将来使用此类产品获得生物豁免,提供了令人信服的数据。在锐拓的下一次本固体制剂分享中,我们将接着这次的分享,展示使用IVRT来构建IVIVC,敬请各位同仁关注。 参考原文:《Assessment of “Sameness” and/or Differences between Marketed Creams Containing Miconazole Nitrate Using a Discriminatory in vitro Release Testing (IVRT) Method》 相关阅读:《FDA IVRT测试工业指南翻译稿》 实验系统Experimental System 实验仪器:锐拓 RT800 自动取样透皮扩散系统                                               了解更多仪器信息和应用案例请关注锐拓仪器公众号和浏览锐拓仪器官网

查看更多
2023-01-16

FDA IVPT 测试 工业指南翻译稿

In Vitro Permeation Test Studies for Topical Drug Products Submitted in ANDAs Guidance for Industry 工业指南中ANDAs申请提交的外用制剂的体外渗透试验研究 U.S. Department of Health and Human Services Food and Drug Administration Center for Drug eva1uation and Research (CDER) October 2022 Generic Drugs 美国卫生与公众服务部食品和药物管理局药物评估与研究中心(CDER)2022年10月仿制药 IINTRODUCTION This guidance is intended to assist applicants who are submitting abbreviated new drug applications (ANDAs) for liquid-based and/or other semisolid products applied to the skin, including integumentary and mucosal (e.g., vaginal) membranes, which are hereinafter called “topical products.” Because of the complex route of delivery associated with these products, which are typically locally acting, and the potential complexity of certain formulations, topical products (other than topical solutions) are classified as complex products. This guidance provides recommendations for in vitro permeation test (IVPT) studies comparing a proposed generic (test) topical product and its reference standard (RS) for the purpose of supporting a demonstration of bioequivalence (BE) to the reference listed drug (RLD). The reference standard ordinarily is the RLD 本指南旨在帮助申请人提交用于皮肤的液体和/或其他半固体产品申请ANDA,包括皮肤和粘膜(如阴道),以下称为“局部产品”。由于这些产品复杂的递送途径,通常是局部起效的,以及某些制剂的潜在复杂性,外用制剂(外用溶液除外)被归类为复杂制剂。本指南为体外渗透试验(IVPT)研究提供了建议,该研究比较了拟申报仿制制剂及其参考制剂(RS),以支持证明与参比制剂的(RLD)生物等效性(BE)。参比制剂通常为RLD This guidance does not address drug products that are administered via ophthalmic, otic, nasal, inhalation, oral, or injection-based routes, or that are transdermal or topical delivery systems (including products known as patches, topical patches, or extended release films). 本指南不适用于通过眼、耳、鼻、吸入、口服或注射途径给药的药物,也不适用于透皮或局部给药系统(包括贴片、局部贴片或缓释膜)。 It is beyond the scope of this guidance to discuss specific topical products to which this guidance applies. FDA recommends that applicants consult this guidance and any relevant product-specific guidances (PSGs) and any other relevant guidances for industry, when considering the design and conduct of IVPT studies that, in conjunction with other studies, as deemed necessary, may be appropriate to support a demonstration that a proposed generic topical product and its RLD are bioequivalent. FDA also recommends that applicants routinely refer to FDA’s guidance web pages, because additional guidances may become available that could assist in the development of a generic topical product. 本指南是不讨论适用该指南的特定外用制剂的指南。FDA建议申请人在考虑IVPT研究的设计和实施时,参考本指南和任何相关的特定产品指南(PSG)以及任何其他相关的行业指南,如有必要,结合其他研究,IVPT研究可能适合支持建议的通用外用制剂及其RLD具有生物等效性的证明。FDA还建议申请人定期查阅FDA的指导网页,因为可能会有更多的指导,有助于仿制药的开发。 In general, FDA’s guidance d0cuments do not establish legally enforceable responsibilities. Instead, guidances describe the Agency’s current thinking on a topic and should be viewed only as recommendations, unless specific regulatory or statutory requirements are cited. The use of the word should in Agency guidance means that something is suggested or recommended, but not required. 一般来说,FDA的指导文件并没有确立法律上可强制执行的责任。相反,指南描述了机构目前对某一主题的想法,并且应仅视为建议,除非引用了具体的监管或法定要求。在机构指南中使用“应该”一词意味着有人建议或建议,但不是必须的。 II. BACKGROUND This guidance has been developed as part of FDA’s “Drug Competition Action Plan,” which, in coordination with the Generic Drug User Fee Amendments (GDUFA) program and other FDA activities, is intended to increase competition in the market place for prescr1ption drugs, facilitate the entry of high-quality and affordable generic drugs, and improve public health. 本指南是作为FDA“药品竞争行动计划”的一部分制定的,该计划配合GDUFA计划和其他FDA举措,旨在促进处方药市场的竞争,促进高质量和实惠的药品的进入市场,并改善公众医疗。 The Federal Food, Drug, and Cosmetic Act (FD&C Act) generally requires an ANDA to contain, among other things, information to show that the proposed generic drug product 1) is the same as the RLD with respect to the active ingredient(s), conditions of use, route of administration, dosage form, strength, and labeling (with certain permissible differences) and 2) is bioequivalent to the RLD. Thus, an ANDA will not be approved if the information submitted in the ANDA is insufficient to show that the test product is bioequivalent to the RLD. 《联邦食品、药品和化妆品法案》(FD&C法案)通常要求ANDA包含合适的信息,说明:仿制药与RLD相比1)具有相同活性成分、使用条件、给药途径、剂型、规格和标签(允许存在某些差异),和2)与RLD具有生物等效性。因此,如果ANDA中提交的信息不足以证明自制制剂与RLD具有生物等效性,则ANDA将不予批准。 An IVPT study may be used to assess the rate and extent to which a drug (i.e., an active ingredient) from a topical product becomes available at or near a site of action in the skin, and may be used to characterize and compare the rate and extent of bioavailability for a drug from a test topical product and RS. The IVPT flux profiles resemble pharmacokinetic profiles and can be analyzed using unique IVPT endpoints that are somewhat analogous to the pharmacokinetic endpoints of maximum concentration (Cmax) and the area under the concentration-time curve(AUC). Yet, IVPT studies characterize the rate and extent of absorption, not the distribution, metabolism and excretion that occurs in vivo. Therefore, while it is relevant to characterize the kinetics of topical drug bioavailability monitored by IVPT studies, the use in this guidance of the term “cutaneous pharmacokinetics” should not be construed to embody all aspects of pharmacokinetics—only those related to the absorption component that directly controls the rate and extent to which a topically applied drug becomes available locally at the site of action. This guidance focuses on general considerations and recommendations for the method development, method validation, and conduct of IVPT studies that are submitted in ANDAs and intended to support a demonstration of BE. IVPT研究可用于评估局部产品中的药物(即活性成分)在皮肤作用部位或附近可用的速率和程度,并可用于表征和比较测试局部产品和RS中药物的生物利用率和程度。IVPT通量曲线类似于药代动力学曲线,可以使用独特的IVPT终点进行分析,这些终点与最大浓度(Cmax)的药代动力学终点和浓度-时间曲线下的面积(AUC)有些相似。然而,IVPT研究表征的是吸收的速率和程度,而不是体内的分布、代谢和排泄。因此,虽然表征IVPT研究监测的局部药物生物利用度的动力学是相关的,本指南中使用的术语“皮肤药代动力学”不应被解释为仅体现与吸收成分相关的药代动力学的所有方面,吸收成分直接控制局部应用药物在作用部位局部可用的速率和程度。本指南侧重于在ANDA中提交的用于支持BE演示的方法开发、方法验证和IVPT研究的一般考虑和建议。 III. IVPT METHOD DEVELOPMENT The development of an IVPT method that is suitable to support a demonstration of BE for a specific topical product routinely involves a systematic series of exploratory studies. Inappropriate or insufficient efforts to develop an IVPT method that is suitable for its intended purpose increases the likelihood that the subsequent IVPT validation, pilot, and pivotal studies will ultimately be inadequate to support a demonstration of BE. By contrast, appropriate and systematic IVPT method development studies help to identify IVPT study designs and protocol (method) parameters which reliably produce flux profiles that can facilitate a comparison of the cutaneous pharmacokinetics of a drug delivered topically to the skin from test topical products and RSs. IVPT方法的开发适用于支持特定局部产品的BE演示,通常涉及一系列系统的探索性研究。开发适合其预期目的的IVPT方法的努力不当或不足,增加了后续IVPT验证、试点和关键研究最终不足以支持BE演示的可能性。相比之下,适当和系统的IVPT方法开发研究有助于确定IVPT研究设计和方案(方法)参数,这些设计和方案能够可靠地产生通量曲线,从而有助于比较从测试局部产品和RS局部递送至皮肤的药物的皮肤药代动力学。 A detailed and well-organized IVPT method development report should be submitted in an ANDA to show how the IVPT method was optimized, and to support a demonstration that the method parameters selected for the IVPT are appropriate or necessary, particularly in situations where the method parameters are different from the methods recommended in this guidance). The Agency’s interest in reviewing the method development report is to understand why specific IVPT method parameters were selected and whether the resulting IVPT method is suitably sensitive and reproducible. This method development report should clearly indicate/distinguish the method parameters used for each set of data, illustrate the efforts made to optimize the IVPT method, and demonstrate that the method parameters selected for the IVPT are appropriate. 应在ANDA中提交一份详细且组织良好的IVPT方法开发报告,以说明IVPT方法是如何优化的,并支持为IVPT选择的方法参数是适当或必要的,特别是在方法参数与本指南中推荐的方法不同的情况下)。机构审查方法开发报告的目的是了解为什么选择了特定的IVPT方法参数,以及所得IVPT方法是否具有适当的敏感性和重现性。该方法开发报告应明确指出/区分每组数据使用的方法参数,说明为优化IVPT方法所做的努力,并证明为IVPT选择的方法参数是合适的。 Applicants are encouraged to use the recommendations in this guidance, and if an applicant elects to use methods that are different from those recommended in this guidance, the IVPT method development report should demonstrate why it is scientifically justified to use an alternative approach than what is recommended in this guidance to optimize the IVPT method. Some examples of recommended procedures are described in subsequent sections, to help applicants identify circumstances when information should be submitted in the ANDA to explain why a different procedure was utilized. 鼓励申请人使用本指南中的建议,如果申请人选择使用与本指南中建议的方法不同的方法,IVPT方法开发报告应说明为什么使用本指南推荐的替代方法来优化IVPT方法在科学上是合理的。建议程序的一些示例在随后的章节中描述,以帮助申请人确定应在ANDA中提交信息的情况,以解释为什么使用不同的程序。 A. IVPT Method Parameters All relevant parameters of the final IVPT method should be summarized (e.g., in a table) and submitted in the ANDA. Also, information should be provided to briefly explain the choice of the final IVPT method parameters like the equipment (e.g., a vertical diffusion cell (VDC)), skin source (e.g., cadaver), skin type (e.g., posterior torso), skin preparation (e.g., dermatomed), skin barrier integrity test (e.g., trans-epidermal water loss (TEWL) measurement), skin barrier integrity test acceptance criteria (e.g., < 15 grams/meter2 /hour (g/m2 /hr)), topical product dose amount (e.g., 15 milligrams/centimeter2 (mg/cm2 )), dose duration (e.g., 6 hours), study duration (e.g., 24 hours, 48 hours, etc.), receptor solution sampling times (e.g., 1, 2, 4, 6, 8, 12, 16, 20, and 24 hours), etc. 应总结最终IVPT方法的所有相关参数(例如,在表格中),并在ANDA中提交。此外,应提供信息,以简要解释最终IVPT方法参数的选择,如设备(例如,垂直扩散池(VDC))、皮肤源(例如,尸体)、皮肤类型(例如,后躯干)、皮肤准备(例如,皮肤科)、皮肤屏障完整性测试(例如,经表皮水分损失(TEWL)测量)、,皮肤屏障完整性测试验收标准(例如,<15克/米2/小时(g/m2/小时))、局部产品剂量(例如,15毫克/厘米2(mg/cm2))、剂量持续时间(例如,6小时)、研究持续时间(如,24小时、48小时等)、受体溶液取样时间(例如1、2、4、6、8、12、16、20和24小时)等。《IVPT测试中的皮肤研究》 B. IVPT Method Considerations The choice of some IVPT method parameters like the equipment, skin source, skin type, skin preparation, and skin barrier integrity test procedures may be based upon investigator experience or convenience, like the availability of specific equipment or instrumentation in a laboratory, established tissue supply agreements, or other logistical considerations. However, if the chosen IVPT method parameters do not appear to be well-suited for a specific IVPT method, it is the applicant’s responsibility to systematically eva1uate alternative method parameters, and ultimately, to validate that the IVPT method parameters chosen are suitable for the intended purpose. The recommended procedures for IVPT method validation are detailed in section IV of this guidance. 一些IVPT方法参数的选择,如设备、皮肤来源、皮肤类型、皮肤准备和皮肤屏障完整性测试程序,可能基于研究人员的经验或便利性,如实验室中特定设备或仪器的可用性、既定的组织供应协议或其他后勤考虑。然而,如果选定的IVPT方法参数似乎不适合特定的IVPT法,则申请人有责任系统地评估备选方法参数,并最终验证选定的IVPT方法参数是否适合预期用途。IVPT方法验证的推荐程序详见本指南第四节。 The choice of other IVPT method parameters like the topical product dose amount, dose duration, study duration (which may be longer than the dose duration), sampling schedule, sampling procedures, receptor solution composition, and sample analytical method may be different for each IVPT method, and such parameters of IVPT methods should be systematically developed, optimized, and/or validated for the relevant topical product, as appropriate. The IVPT method development studies should characterize how differences in these method parameters influence the resulting IVPT flux profile so that optimal study conditions can be objectively selected from among those eva1uated. 其他IVPT方法参数的选择,如局部产品剂量、剂量持续时间、研究持续时间(可能长于剂量持续时间)、取样计划、取样程序、受体溶液组成和样品分析方法,对于每种IVPT方法可能有所不同,应系统开发、优化IVPT方法的此类参数,和/或对相关局部产品进行验证。IVPT方法开发研究应描述这些方法参数的差异如何影响最终的IVPT通量分布,以便从评估的条件中客观选择最佳研究条件。 The selection of the dose amount used in the study should be assessed for each IVPT method based upon studies performed during IVPT method development. Different dose amounts may be compared in parallel on replicate skin sections from the same set of donors to optimize the dose amount for the IVPT study. Considerations for selecting an optimal dose amount may include (1) the consistency with which the dose can be applied (potentially using different dispensing and/or spreading techniques), (2) the reproducibility of the flux profiles, (3) the influence of dose amount and dose duration on the shape of the flux profile, and (4) the approximate range of drug concentrations in receptor solution samples at different time points (relative to the sample analytical method limits of quantification). 应根据IVPT方法开发期间进行的研究,评估每种IVPT方法在研究中使用的剂量选择。可以在来自同一组供体的复制皮肤切片上平行比较不同剂量,以优化IVPT研究的剂量。选择最佳剂量的考虑因素可以包括(1)可以施加剂量的一致性(可能使用不同的分配和/或散布技术),(2)通量分布的再现性,(3)剂量和剂量持续时间对通量分布形状的影响,和(4)不同时间点受体溶液样品中药物浓度的近似范围(相对于样品分析方法的定量限值)。 The selected sampling schedule and study duration should be sufficient to characterize the cutaneous pharmacokinetics of the drug, which ideally includes a sufficiently complete flux profile to identify the maximum (peak) flux and a decline in the flux thereafter across multiple subsequent time points. A dose that remains on the skin for the duration of the study may continue to deliver the drug for a sustained period and may not necessarily exhibit a suitable decline in the flux at later time points. In such instances, it may be appropriate to develop an IVPT method that involves wiping off the applied dose after a suitable duration on the skin and continuing to monitor the receptor solution for an extended period thereafter, during which the decline in the flux profile can be characterized. The sampling frequency should be selected to provide a suitable resolution for the flux profile, and a minimum of eight non-zero sampling time points is recommended across the study duration (e.g., 48 hours). 所选择的采样时间表和研究持续时间应足以表征药物的皮肤药代动力学,理想情况下,包括足够完整的通量曲线,以确定最大(峰值)通量以及随后在多个后续时间点的通量下降。在研究持续时间内留在皮肤上的剂量可能会持续给药一段时间,并且不一定会在以后的时间点出现适当的流量下降。在这种情况下,开发IVPT方法可能是合适的,该方法包括在皮肤上适当的持续时间后擦去施用的剂量,并在此后的较长时间内继续监测受体溶液,在此期间可以表征通量分布的下降。应选择采样频率,以便为通量分布提供合适的分辨率,并且建议在整个研究持续时间内(例如,48小时)至少八个非零采样时间点。 C. IVPT Method Procedures and Controls Suitable technical procedures and control parameters should be established during method development. These may include procedures for preparing and mounting the skin on the diffusion cell in a consistent manner, determining the instrument settings that regulate the skin surface temperature within the specified range, performing the barrier integrity test appropriately, controlling the accuracy and precision of the dose amount dispensed on each skin section. 在方法开发过程中,应建立适当的技术程序和控制参数。这些可以包括以一致的方式制备皮肤并将其安装在扩散池上的程序,确定将皮肤表面温度调节在规定范围内的仪器设置,适当地进行屏障完整性测试,控制分配到每个皮肤部分的剂量的准确性和精密度。 For example, a dosing procedure may be developed that uses a positive displacement pipette to dispense a volumetrically controlled amount of a topical product, targeting the deposition on the skin of a certain mass (e.g., 15 mg/cm2 ) of topical product. If the inner diameter of the orifice in the dosing compartment of the diffusion cell is 15 millimeters (mm), and the effective dose area is ~1.77 cm2 , this would indicate a target dose of ~26.5 mg of topical product per diffusion cell. Experiments during method development may establish that, based upon the density of the topical product, a specific volumetric setting on a specific model of positive displacement pipette with a specific pipette tip repeatedly dispenses ~27.5 mg of topical product (e.g., characterized by multiple replicate pipette dispensations into a weigh boat on a fine balance). This pipette setting may be optimal for a dosing procedure where the dose spreading instrument, like the flat bottom of a high performance liquid chromatography (HPLC) glass vial, or the rounded end of a glass rod or capillary tube, is subsequently used to spread the dispensed dose evenly upon the skin section mounted in the diffusion cell, and where repeatedly weighing the dose-spreading instrument before and after the dose spreading indicates that the residual topical product remaining on the bottom of the glass vial after the dose spreading reproducibly amounts to ~1.0 mg of topical product (indicating that ~26.5 mg of the topical product would reproducibly be dosed to each skin section). Such characterizations of the technical procedures and control parameters for the IVPT method, like the reproducibility of the dosing procedure, should be established during method development and may not need to be demonstrated thereafter each time the same procedure is used. 例如,可以开发一种剂量程序,其使用正位移移液管来分配体积控制量的局部产品,靶向一定质量(例如,15mg/cm2)的局部产品在皮肤上的沉积。如果扩散池给药室的孔口内径为15毫米(mm),有效剂量面积约为1.77 cm2,则表明每个扩散池的目标剂量为约26.5 mg局部产品。方法开发过程中的实验可以确定,基于外用产品的密度,具有特定移液管尖端的特定型号正移液管的特定体积设置可重复分配约27.5 mg外用产品(例如,以多次重复移液管分配为特征,将其分配到精密天平上的称量舟中)。这种移液管设置对于剂量分配过程可能是最佳的,其中剂量分配仪器,如高效液相色谱(HPLC)玻璃瓶的平底,或玻璃棒或毛细管的圆形端,随后用于将分配的剂量均匀地分配到安装在扩散池中的皮肤部分上,并且其中在剂量散布之前和之后重复称量剂量散布仪器表明,在剂量散布之后残留在玻璃瓶底部的残留局部产品可重复地达到约1.0mg局部产品(表明将可重复地将约26.5mg局部产品施用到每个皮肤部分)。IVPT方法的技术程序和控制参数的此类特征,如给药程序的再现性,应在方法开发过程中确定,此后可能不需要在每次使用相同程序时进行证明。‍ ‍D. ‍‍IVPT Skin Barrier Integrity Testing: Common Methods The technical procedures for the skin barrier integrity test should be established during IVPT method development. Three types of barrier integrity tests are common, however, there are currently no applicable compendial standard protocols or acceptance criteria for any of these three types of human skin barrier integrity tests. Nonetheless, recommended parameters for the three common types of barrier integrity tests are discussed below. 应在IVPT方法开发期间制定皮肤屏障完整性测试的技术程序。三种类型的屏障完整性测试是常见的,然而,目前没有适用于这三种类型人体皮肤屏障完整性检测的药典标准协议或验收标准。尽管如此,下面讨论了三种常见类型的屏障完整性测试的推荐参数。IVPT测试中的皮肤研究 1. Trans-Epidermal Water Loss Skin Barrier Integrity Test A TEWL skin barrier integrity test involves a measurement near the outer surface of the skin of the rate at which water (vapor) is fluxing through the skin barrier from the underside of the skin section. For the test, the skin section is mounted in a diffusion cell (e.g., clamped in place between the donor and receptor compartments), with the underside of the skin in contact with the receptor solution in the receptor compartment (e.g., phosphate buffered saline, pH 7.4), and equilibrated to a skin surface temperature of 32°C ± 1°C. If skin sections are cut large enough to cover the flange of the diffusion cell in which they are mounted, then after they have equilibrated for several hours at a skin surface temperature of 32°C ± 1°C, it may be feasible to gently remove the donor compartment without disrupting a skin section’s adherence to the lower flange of the diffusion cell, thereby allowing the TEWL probe to be placed directly on the skin surface, instead of being placed atop the donor compartment. Typically, a minimum of three replicate measurements are made on each skin section, which are recorded after the measurements have stabilized. TEWL皮肤屏障完整性测试包括在皮肤外表面附近测量水(蒸汽)从皮肤部分下侧流过皮肤屏障的速率。对于试验,将皮肤部分安装在扩散池中(例如,夹在供体和受体室之间的适当位置),皮肤下侧与受体室中的受体溶液(例如,磷酸盐缓冲盐水,pH 7.4)接触,并平衡至32°C±1°C的皮肤表面温度。如果皮肤部分被切割得足够大,足以覆盖其所安装的扩散池的法兰,那么在皮肤表面温度为32°C±1°C的条件下平衡数小时后,可以在不破坏皮肤部分与扩散池下法兰的粘附性的情况下轻轻移除供体隔室,从而允许TEWL探针直接放置在皮肤表面上而不是放置在供体隔室的顶部。通常,在每个皮肤部分上至少进行三次重复测量,并在测量稳定后进行记录。(下图,皮肤测试用经皮水分流失测量仪) Commercially available devices to measure TEWL may differ in design and operational principles. The TEWL measured by devices with certain designs (e.g., an open chamber versus a closed chamber) may be relatively more susceptible to the influence of environmental conditions. Therefore, environmental temperature and humidity are typically controlled as precisely as possible (e.g., a temperature range of 21°C ± 2°C and a humidity range of 50% ± 20% relative humidity are ideal, if feasible). More precise control of the relative humidity (e.g., in the range of 40% – 50%) may reduce the variability of TEWL measurements for devices with certain designs. Certain designs of measurement probes and adapters for in vitro use are available by the manufacturers of TEWL devices, and may be appropriate to use. Inconsistency in the diameters for the measurement probe chamber, the measurement probe orifice, the in vitro adapters, and the skin area being measured, as well as variation in the distance of the probe sensor(s) from the skin surface, potentially because of the (variable) height of donor compartments (when applicable), could increase the variability of TEWL measurements. Inconsistent control of the alignment of the TEWL measurement device in relation to the donor compartment and/or the skin section may also increase the variability of TEWL measurements. Also, the TEWL measured by devices with certain designs may be relatively more susceptible to the influence of heat transfer from the hand that holds the probe. Applicants should follow relevant instructions in the manufacturer’s user manual for the specific TEWL measurement device used. 用于测量TEWL的市售设备在设计和操作原理上可能有所不同。由具有特定设计(例如,开放室与封闭室)的装置测量的TEWL可能相对更容易受到环境条件的影响。因此,通常尽可能精确地控制环境温度和湿度(例如,如果可行,理想的温度范围为21°C±2°C,湿度范围为50%±20%相对湿度)。更精确地控制相对湿度(例如,在40%–50%的范围内)可以减少具有特定设计的设备的TEWL测量的可变性。TEWL装置的制造商可提供用于体外使用的测量探针和适配器的某些设计,并且可能适合使用。测量探头室、测量探头孔口、体外适配器和被测皮肤面积的直径不一致,以及探头传感器与皮肤表面的距离变化,可能是由于供体隔室的(可变)高度(如适用),可能会增加TEWL测量的变异性。TEWL测量装置相对于供体隔室和/或皮肤部分的对准的不一致控制也可能增加TEWL测定的可变性。此外,由具有特定设计的设备测量的TEWL可能相对更容易受到握住探头的手的热传递的影响。申请人应遵循制造商用户手册中关于所用特定TEWL测量设备的相关说明。 No more than approximately 15 grams of water per square meter per hour (i.e., ≤ 15 g/m2 /hr) could be a reasonable skin barrier integrity acceptance (cutoff) criterion for a TEWL barrier integrity test on human torso or thigh skin; if this was selected as the cutoff criterion, skin sections with a TEWL > 15 g/m2 /hr would fail the test. Skin sections that fail a barrier integrity test should not be dosed, but may serve as non-dosed control skin sections. A higher cutoff (e.g., ≤ 20 g/m2 /hr) may also be reasonable if justified by experimental data demonstrating that the selected acceptance criterion appropriately discriminates skin sections with a compromised barrier integrity from those with a competent barrier integrity. 每平方米每小时不超过约15克水(例如,≤ 15g/m2/hr)可能是人体躯干或大腿皮肤上TEWL屏障完整性测试的合理皮肤屏障完整性验收(截止)标准;如果将此作为截止标准,TEWL>15 g/m2/hr的皮肤切片将无法通过测试。未通过屏障完整性测试的皮肤部分不应给药,但可作为未给药的对照皮肤部分。较高的截止(例如,≤ 20g/m2/hr)也可能是合理的,如果实验数据证明所选验收标准适当地区分屏障完整性受损的皮肤部分和屏障完整性合格的皮肤部分。 However, TEWL measurements for skin sections with a competent barrier integrity can vary depending upon the TEWL measurement device, the manner in which it is operated, and the environmental conditions (e.g., higher ambient humidity or greater distance from the skin surface may decrease the value of the TEWL measurement). Precise control of environmental and device/operational factors can minimize variability in TEWL measurements. Therefore, the technical procedures for measuring TEWL should be optimized during IVPT method development (or based upon prior optimization in the laboratory performing the test). Also, the TEWL measurement device should be appropriately calibrated (by the manufacturer, and for some devices, also before each set of tests). Applicants may provide information about the relevant calibration procedures specified by the manufacturer for the specific TEWL device used; this can be submitted in the ANDA along with the IVPT method development report, to support the appropriateness of the technical procedures established by the laboratory for TEWL measurements. When a TEWL barrier integrity test is used in any study phase (IVPT method development, pilot study, validation, and/or pivotal study) the ambient laboratory temperature and humidity during the TEWL barrier integrity test should be monitored and reported. 然而,对于具有合格屏障完整性的皮肤部分的TEWL测量可以根据TEWL测试设备、其操作方式和环境条件而变化(例如,较高的环境湿度或离皮肤表面更大的距离可能会降低TEWL的测量值)。精确控制环境和设备/操作因素可以最大限度地减少TEWL测量的变化。因此,应在IVPT方法开发过程中优化TEWL测量的技术程序(或基于实验室进行试验的事先优化)。此外,TEWL测量设备应进行适当校准(由制造商进行校准,对于某些设备,也应在每组测试之前进行校准)。申请人可提供制造商为所用特定TEWL装置规定的相关校准程序的信息;这可以与IVPT方法开发报告一起提交在ANDA中,以支持实验室为TEWL测量建立的技术程序的适当性。当TEWL屏障完整性测试用于任何研究阶段(IVPT方法开发、试点研究、验证和/或关键研究)时,应监测和报告TEWL阻隔完整性测试期间的实验室环境温度和湿度。 2.Tritiated Water Skin Barrier Integrity Test An example of a recommended approach to a tritiated water skin barrier integrity test would be to mount the skin in a diffusion cell (e.g., clamped in place between the donor and receptor compartments) and allow it to equilibrate to a skin surface temperature of 32°C ± 1°C with the stratum corneum exposed to the air in the donor compartment and the underside of the skin in contact with the receptor solution (e.g., phosphate buffered saline, pH 7.4). 氚化水-皮肤屏障完整性测试的推荐方法的一个例子是将皮肤安装在扩散池中(例如,夹在供体和受体室之间的适当位置),并使其平衡至32°C±1°C的皮肤表面温度,使角质层暴露在供体室中的空气中,皮肤下侧与受体溶液(例如磷酸盐缓冲盐水,pH 7.4)。 A small amount of tritiated water (sufficient to cover the entire surface of the skin section) would be briefly dosed on the stratum corneum. This dose of tritiated water would be left on the surface for a precisely controlled and relatively brief period (e.g., 5 minutes) after which it would be removed from the skin surface (e.g., using a pipette to remove the bulk volume and then an absorbent low lint laboratory tissue to gently blot dry). The receptor solution would then be sampled at a precise duration after the removal of the tritiated water from the skin surface (e.g., 30 minutes after the removal of the 5-minute dose of tritiated water from the skin surface). 将少量的氚水(足以覆盖皮肤部分的整个表面)短暂地施加于角质层。该剂量的氚水将在表面上停留一段精确控制且相对较短的时间(例如,5分钟),之后将其从皮肤表面去除(例如,使用移液管去除大量体积,然后使用实验室吸水纸轻轻吸干)。然后在从皮肤表面去除氚水之后的精确持续时间(例如,从皮肤表面除去5分钟剂量的氚水后30分钟)对受体溶液进行取样。 While the entire volume of the receptor compartment may be removed and replenished, typically only an aliquot of the receptor solution (e.g., phosphate buffered saline, pH 7.4) is transferred to a suitable volume of scintillation fluid for counting. The volume of the aliquot typically depends upon the type of scintillation fluid used and the maximum amount of aqueous fluid that is suitable to mix with the scintillation fluid. A scintillation counter is then used to quantify the amount of radioactivity in the aliquot sampled, which can be used to calculate the amount of tritiated water that permeated into the larger (entire) volume of receptor solution; the calculation is performed using the specific activity of the tritiated water to equate a given amount of radioactivity to the equivalent volume of tritiated water that permeated per square centimeter of skin surface area. 虽然可以移除并补充整个体积的受体室,但通常仅将一等分的受体溶液(例如,磷酸盐缓冲盐水,pH 7.4)转移到合适体积的闪烁液中进行计数。等分试样的体积通常取决于所使用的闪烁流体的类型以及适合与闪烁流体混合的水性流体的最大量。然后,使用闪烁计数器来定量取样的等分试样中的放射性量,可用于计算渗入较大(整个)体积的受体溶液中的氚水的量;使用氚水的比活度进行计算,以将给定的放射性量等同于每平方厘米皮肤表面积渗透的氚水当量体积。 Approximately 1.5 equivalent(eq.) microliter (µL) of tritiated water per cm2 (i.e., ~1.5 eq. µL/cm2 or ~1.5 eq. mg/cm2 ) would be a reasonable skin barrier integrity acceptance (cutoff) criterion for a tritiated water barrier integrity test that involves a 5-minute dose followed by a 30- minute sampling duration (i.e., sampling 30 minutes after dose removal) on human torso or thigh skin. Skin sections with a tritiated water test result of > 1.5 eq. mg/cm2 would fail the test and be excluded from the population of skin sections dosed with the topical product; skin sections that fail a barrier integrity test should not be dosed, but may serve as non-dosed control skin sections. Other acceptance criteria may also be reasonable if justified by experimental data demonstrating that the selected acceptance criterion appropriately discriminates skin sections with a compromised barrier integrity from those with a competent barrier integrity. 人体躯干或大腿皮肤上氚水屏障完整性测试的合理皮肤屏障完整性验收(截止)标准是每cm2约1.5当量(eq)微升(µL)的氚水(例如,约1.5 eq. µL/cm2或约1.5 eq. mg/cm2)。该测试涉及5分钟剂量,随后30分钟采样持续时间(即,去除剂量后30分钟采样)。氚水测试结果大于1.5 eq. mg/cm2的皮肤切片判定为未通过测试,并被排除在使用局部产品的皮肤切片人群之外;未通过屏障完整性测试的皮肤部分不应给药,但可作为未给药的对照皮肤部分。如果实验数据证明所选验收标准能够适当区分屏障完整性受损的皮肤部分和屏障完整性合格的皮肤部分,则其他验收标准也可能合理。(下图,放射性测试用闪点计数器) When calculating the results for a tritiated water barrier integrity test, it may be important to account for the surface area dosed. For example, if using an acceptance criterion of 1.5 eq. mg/cm2 with a diffusion cell that has an orifice diameter of 15 mm and a skin surface area of 1.77 cm2 , the mass of tritiated water that would be calculated to have permeated into the receptor compartment would be ~2.7 eq. mg/cm2 of tritiated water. 当计算氚水屏障完整性测试的结果时,给药表面积是一个很重要的影响因素。例如,如果使用1.5 eq. mg/cm2的验收标准和孔直径为15 mm、皮肤表面积为1.77 cm2的扩散池,则计算出渗入受体室的氚水质量为约2.7 eq. mg/cm2的氚。 3.Electrical Based Skin Barrier Integrity Tests There are several variations of electrical based skin barrier integrity tests that report the test result as a measure of the resistance, conductance, or a related electrical concept that characterizes the bulk flow of electrical current across the skin. Transepithelial electrical resistance tests involving the skin may be referred to more specifically as Trans-Epidermal Electrical Resistance (TEER) skin barrier integrity tests. The test results may be described in units of conductance, which is the reciprocal of resistance. Electrical based skin barrier integrity tests often use instruments that are designed to measure the inductance (L), capacitance (C), and resistance (R) of electronic circuits or electrical components; these instruments are commonly known as LCR meters and have different settings (test parameters) that can be adjusted. 基于电的皮肤屏障完整性测试有几种变体,将测试结果报告为电阻、电导或相关电概念的测量值,以表征穿过皮肤的整体电流。涉及皮肤的经上皮电阻测试可以更具体地称为经表皮电阻(TEER)皮肤屏障完整性测试。测试结果可用电导单位表示,电导是电阻的倒数。基于电气的皮肤屏障完整性测试通常使用设计用于测量电子电路或电气部件的电感(L)、电容(C)和电阻(R)的仪器;这些仪器通常被称为LCR仪表,并具有可调整的不同设置(测试参数)。 An example of a recommended approach to a TEER skin barrier integrity test would be to mount the skin in a diffusion cell (e.g., clamped in place between the donor and receptor compartments) and allow it to equilibrate to a skin surface temperature of 32°C ± 1°C with the stratum corneum exposed to the air in the donor compartment and the underside of the skin in contact with an ionic solution (e.g., phosphate buffered saline, pH 7.4). TEER皮肤屏障完整性测试推荐方法的一个示例是将皮肤安装在扩散池中(例如,夹在供体和受体隔室之间的适当位置),并使其恒定在32°C±1°C的皮肤表面温度,角质层暴露于供体隔室中的空气中,皮肤下侧与离子溶液接触(例如,磷酸盐缓冲盐水,pH 7.4)。 A small amount of the ionic solution (sufficient to cover the entire surface of the skin section) would be briefly dosed on the stratum corneum. Then, one lead/electrode from an LCR meter would be placed in contact with the solution in the receptor compartment while the other lead/electrode would be placed in contact with the solution in the donor compartment. After measuring the resistance across the skin (e.g., in kΩ, normalized for area, noting that resistance is inversely proportional to area) the solution in the donor compartment would be removed and the skin surface would be gently blotted dry with an absorbent low lint laboratory tissue. The skin (still mounted in the diffusion cell) would then be allowed to equilibrate with the dry air above for a sufficient duration to normalize the hydration state of the stratum corneum before being dosed with the test topical product or RS. 将少量离子溶液(足以覆盖皮肤部分的整个表面)短暂地施加到角质层上。然后,LCR测量仪的一根导线/电极与受体室中的溶液接触,而另一根导线或电极与供体室中的液体接触。测量皮肤上的电阻(例如,kΩ,按面积归一化,注意电阻与面积成反比)后,除去供体室中的溶液,并用吸水性低皮棉实验室纸巾轻轻吸干皮肤表面。然后让皮肤(仍安装在扩散池中)与上面的干燥空气平衡足够长的时间,以使角质层的水合状态正常化。 The results for a TEER skin barrier integrity test can vary substantially depending on the LCR meter settings (e.g., frequency) and the technical procedures used for the test. The acceptance criterion for a specific electrical based skin barrier integrity test method may be justified by experimental data demonstrating that the selected acceptance criterion appropriately discriminates skin sections with a compromised barrier integrity from those with a competent barrier integrity. TEER皮肤屏障完整性测试的结果可能会根据LCR仪表设置(例如频率)和测试使用的技术程序而产生较大差异。可以通过实验数据证明,特定基于电气的皮肤屏障完整性测试方法的验收标准可以适当区分屏障完整性受损的皮肤部分和屏障完整性合格的皮肤部分。 E.IVPT Skin Barrier Integrity Testing: General Considerations There are three general considerations for the development or adoption of technical procedures for any skin barrier integrity test method during IVPT method development: 在IVPT方法开发过程中,开发或采用任何皮肤屏障完整性测试方法的技术程序有三个一般考虑因素: i. The technical procedures should not irreversibly alter the skin barrier. It may be acceptable to temporarily alter the hydration state of the stratum corneum by briefly depositing an aqueous solution on the surface of the skin, as long as sufficient time is afforded for the hydration of the stratum corneum to normalize before dosing of the topical product. The procedure described above for a brief (e.g., 5-minute) exposure of the skin surface to tritiated water followed by a 30-minute duration during which the hydration state of the stratum corneum is re-equilibrating would likely be appropriate. By contrast, a 30-minute exposure of the skin surface to an aqueous solution for an electricalbased test method, followed within 5 minutes by dosing of the topical product, may not be appropriate without further characterization of the influence of the hydration state of the stratum corneum on the discrimination sensitivity of the skin to differences in topical bioavailability. Similarly, if a portable lamp were placed close to the skin to improve visibility while study procedures were being performed, the heat from the lamp may alter the local (micro)environment of the skin in a manner that is not representative of the ambient environmental conditions in the laboratory; this should be avoided. i、 技术程序不应给皮肤屏障造成不可逆转地改变。只要有足够的时间使角质层的水合作用正常化,就可以通过在皮肤表面短暂沉积水溶液来暂时改变角质层的水合状态。上述将皮肤表面短暂(例如5分钟)暴露于氚水,然后持续30分钟,在此期间角质层的水合状态重新平衡的过程可能是合适的。相比之下,如果不进一步表征角质层的水合状态对皮肤对局部生物利用度差异的辨别敏感性的影响,将皮肤表面暴露于基于电的测试方法的水溶液中30分钟,然后在5分钟内给药局部产品可能是不合适的。类似地,如果在研究时将便携式灯靠近皮肤放置以提高能见度,灯的热量可能会改变皮肤的局部(微)环境,而这种方式不能代表实验室中的环境条件,应该避免。 ii. The acceptance criterion should be a cutoff value for the test result, at which a skin section fails the test. Skin sections that fail a barrier integrity test should not be dosed but may serve as non-dosed control skin sections. Skin sections with a passing barrier integrity test result may be considered to have a competent barrier integrity and may be dosed. This acceptance criterion should be selected based upon an understanding of the distribution of test results (among multiple replicate skin sections from multiple donors) for the specific barrier integrity test procedure performed with the specific type and preparation of skin under conditions relevant to the IVPT pivotal studies submitted in the ANDA. The intention of the barrier integrity test is to identify (and exclude) skin sections whose barrier integrity (intactness) is compromised. The intent is not to reduce the inherent variability in barrier function (permeability) in human skin that is representative of real variation in the human population. Also, the relative permeability of the skin to a drug from a topical product may not necessarily correlate with the permeability of the skin to water, and therefore, constraining the variability of the skin permeability to water (using a stricter acceptance criterion that excludes a larger number of skin sections) may not necessarily reduce the variability in the IVPT study results. ii.验收标准应为皮肤部分未通过测试结果时的临界值。未通过屏障完整性测试的皮肤部分不应给药,但可作为未给药的对照皮肤部分。屏障完整性测试结果合格的皮肤部分可被视为具有合格的屏障完整性,并可给药。应基于对测试结果分布(来自多个供体的多个重复皮肤切片)的理解来选择此接受标准,该测试程序是在与ANDA中提交的IVPT关键研究相关的条件下,使用特定类型和制备的皮肤进行的。屏障完整性测试的目的是识别(并排除)屏障完整性(完整性)受损的皮肤部分。其目的并不是减少人体皮肤屏障功能(渗透性)的固有变异性,这这代表了人群的真实变化。此外,皮肤对局部产品的药物的相对渗透性可能不一定与皮肤对水的渗透性相关,因此,限制皮肤对水渗透性的可变性(使用更严格的接受标准,排除更多的皮肤部分)不一定会降低IVPT研究结果的可变性。 iii. The acceptance criterion should be able to discriminate skin sections with a compromised barrier integrity. This may be demonstrated by measuring the barrier integrity of skin sections mounted and equilibrated in a diffusion cell before and after deliberately compromising the skin barrier (e.g., by repeatedly using adhesive tape to strip away increasing amounts of the stratum corneum, piercing the skin several times with a 30 gauge needle, or using other physical or chemical insults to damage the skin barrier). Based upon the acceptance criterion selected, the test result for skin sections that pass the test before being damaged should fail the test after the damage. iii.验收标准应能够区分屏障完整性受损的皮肤部分。这可以通过在故意破坏皮肤屏障之前和之后测量在扩散池中安装和平衡的皮肤部分的屏障完整性来证明(例如,通过反复使用胶带剥离越来越多的角质层,用30号针刺穿皮肤几次,或使用其他物理或化学侮辱来破坏皮肤屏障)。根据选定的接受标准,受损前测试结果合格的皮肤,破损后的测试结果应不合格。 F.Differences Between IVPT Method Development and Validation 1.Optimization of an IVPT Method Prior to Advancing to IVPT Method Validation Different study designs and method parameters may be eva1uated during the IVPT method development phase. For example, if the selected study parameters initially involve a dose duration of 48 hours and a study duration of 48 hours, and the flux profile is measurable, but it is not feasible to identify the maximum (peak) flux and a decline in the flux thereafter across multiple subsequent time points, then it may be appropriate to eva1uate other study parameters as part of the IVPT method development. For example, a different target dose of the topical product and/or a longer sampling duration may be eva1uated. An alternate study design may involve a shorter dose duration (e.g., 4–6 hours) after which the applied dose is removed from the skin, and the receptor solution continues to be sampled across a study duration that is sufficient to identify the maximum (peak) flux and a decline in the flux thereafter across multiple subsequent time points. While shorter dose durations can help to improve the shape of IVPT flux profiles, the removal of the topical product dose from the skin surface can be challenging and often requires its own method development and optimization. Also, the design of sensitivity studies for such an IVPT study design may require a more sophisticated understanding of IVPT studies. While reasonable efforts should be made to develop an IVPT method that produces a well-defined maximum (peak) flux and a decline in the flux thereafter across multiple subsequent time points, this may not be feasible for certain topical products even with study durations of 96 hours, or, at least, may not be feasible to produce reliably in all donors. In such circumstances, the IVPT method development report should detail the systematic efforts made to optimize the IVPT method. 在IVPT方法开发阶段,可以评估不同的研究设计和方法参数。例如,如果所选的研究参数最初涉及48小时的剂量持续时间和48小时的研究持续时间,并且通量分布是可测量的,但无法确定最大(峰值)通量和通量下降,则可以评估其他研究参数作为IVPT方法开发的一部分。例如,可以评估局部产品的不同目标剂量和/或更长的取样持续时间。另一种研究设计可能涉及更短的剂量持续时间(例如,4-6小时),之后去除皮肤的上样剂量,并且在研究持续时间内继续对受体溶液进行采样,该研究持续时间足以确定最大(峰值)通量以及随后在多个后续时间点的通量下降。虽然更短的剂量持续时间有助于改善IVPT通量分布曲线的形状,但从皮肤表面去除局部产品剂量可能具有挑战性,通常需要自己开发方法和优化。此外,此类IVPT研究设计的敏感性研究设计可能需要对IVPT研究有更复杂的理解。尽管应尽合理努力开发一种IVPT方法,该方法可在随后的多个时间点产生明确定义的最大(峰值)通量和通量下降,但这对于某些局部产品来说可能不可行,即使研究持续时间为96小时,或者至少不可能在所有供体中稳定地产生。在这种情况下,IVPT方法开发报告应详细说明为优化IVPT方法所做的系统努力。 The IVPT method development studies, being exploratory in nature, are often performed using a sample analytical method that is not validated (e.g., an HPLC or ultrahigh performance liquid chromatography (UPLC) method, often involving mass spectrometry (MS)); also, IVPT method development studies are often conducted in a manner that is not compatible with a quality management system which would otherwise make the evidence generated suitable to support valid conclusions. Such method development studies would not be suitable to demonstrate the validity of an IVPT method, or associated results. Therefore, although it may appear to be redundant, certain experiments performed during IVRT method development may need to be repeated during IVPT method validation, using appropriate controls, like a validated analytical method and procedures that are compatible with a suitable quality management system. IVPT方法开发研究本质上是探索性的,通常使用未经验证的样品分析方法(例如,HPLC或超高效液相色谱(UPLC)方法,通常涉及质谱(MS));此外,IVPT方法开发研究通常与质量管理体系不兼容,否则会使生成的证据适合支持有效结论。此类方法开发研究不适合证明IVPT方法或相关结果的有效性。因此,尽管IVRT方法开发过程中进行的某些实验看起来可能是多余的,但在IVPT方法验证过程中可能需要重复进行,使用适当的控制,如经过验证的与合适的质量管理系统兼容的分析方法和程序。。 It is important to clearly segregate and consistently identify those experiments and results that were part of IVPT method development separately from those that were part of IVPT method validation. It is also important to consistently identify all relevant method parameters and experimental conditions/controls for each set of IVPT results. Information in the method development report should clearly identify/distinguish when the results for apparently similar sets of experiments may have been obtained using different method parameters. Method development reports should clarify which sets of diffusion cells were run in parallel or separately (e.g., on separate days). In addition, the sample analytical method parameters used to analyze the samples from each set of IVPT experiments should be specified, and the report should indicate whether or not the sample analytical method was validated (either at the time of sample analysis or subsequently). 重要的是要明确的将IVPT方法开发中的实验和结果与IVPT方法验证中的实验与结果分开,并加以一致识别。对于每组IVPT结果,一致识别所有相关的方法参数和实验条件/对照同样重要。方法开发报告中的信息应清楚地识别/区分什么时候明显相似的实验结果可能是使用不同的方法参数获得的。方法开发报告应阐明哪些扩散测试池组是平行或单独运行的(例如,在不同的日子)。此外,应规定用于分析每组IVPT实验样品的样品分析方法参数,报告应说明样品分析方法是否经过验证(在样品分析时或随后)。 IV.IVPT METHOD VALIDATION When all the relevant parameters of the IVPT method have been established, a pilot study should be performed using the final IVPT method and using a validated sample analytical method. The purpose of the pilot study is to validate the suitability of the selected IVPT method parameters by demonstrating that the performance characteristics of the IVPT method are appropriate to compare the cutaneous pharmacokinetics of a drug delivered topically from a test product and RS. The results from the pilot study, thereby, support the systematic validation of the IVPT method, which proceeds as a distinct study phase following IVPT method development. 当IVPT方法的所有相关参数都已确定后,应使用最终IVPT方法和经验证的样品分析方法进行试点研究。试点研究的目的是通过证明IVPT方法的性能特征适用于比较在测试产品和RS中局部传递的药物的皮肤药代动力学,来验证所选IVPT方法参数的适用性。因此,试点研究结果支持IVPT方法系统验证,这在IVPT方法开发之后作为一个独特的研究阶段进行。 The results from this IVPT pilot study can help to estimate the number of donors that may be needed to adequately power the IVPT pivotal study. In addition to the test topical product and RS eva1uated in the pilot study, a parallel assessment should be performed with a third topical product or formulation that is known or designed to be different from the RS, to validate the selectivity of the IVPT method to discriminate differences in bioavailability. The IVPT pilot study results should be plotted with error bars, comparing the permeation profiles for the three treatment groups in the pilot study. Separate plots should be prepared for average flux results and average cumulative permeation results. These data can be used to support specific IVPT method validation parameters (e.g., permeation profile and range). IVPT试点研究的结果有助于估计可能需要的供体数量,以充分支持IVPT关键研究。除了试点研究中评估的试验外用产品和RS外,还应使用已知或设计与RS不同的第三种外用产品或配方进行平行评估,以验证IVPT方法对区分生物利用度差异的选择性。IVPT试点研究结果应绘制误差条,比较中试研究中三个治疗组的渗透曲线。应为平均通量结果和平均累积渗透结果绘制单独的图。这些数据可用于支持特定的IVPT方法验证参数(例如渗透图谱和范围)。 A pilot IVPT study performed with multiple skin donors (e.g., 4–6 skin donors) and a minimum of four replicate skin sections per donor per treatment group is recommended. As skin from an increasing number of donors is eva1uated in the pilot study, the accuracy of the estimated number of donors needed to adequately power the IVPT pivotal study may improve. While skin from the same donors eva1uated in the pilot study may also be used in the IVPT pivotal study, the results from the pilot study should not be combined with the results from the IVPT pivotal study for the purpose of statistical analysis. 建议对多个皮肤供者(例如4-6个皮肤捐赠者)进行IVPT试验研究,每个治疗组每个供者至少四个重复皮肤切片。随着越来越多的供者的皮肤在试点研究中得到评估,为IVPT关键研究提供足够动力所需捐献者估计数量的准确性可能会提高。虽然在试点研究中评估的同一供者的皮肤也可用于IVPT关键研究,但试点研究的结果不应与IVPT关键性研究的结果结合起来进行统计分析。 The equipment, methodologies, and study conditions used in the IVPT pilot study (and the eventual IVPT pivotal study) should be appropriately validated or qualified. If an applicant elects to use equipment, methodologies, or study conditions that are different from those recommended in this guidance, the applicant should demonstrate why it was necessary and scientifically justified to do so. Detailed protocols and well-controlled study procedures are recommended to ensure the precise control of dosing, sampling, and other IVPT study parameters, as well as potential sources of experimental bias. IVPT试点研究(以及最终的IVPT关键研究)中使用的设备、方法和研究条件应经过适当验证或鉴定。如果申请人选择使用与本指南中建议的不同的设备、方法或研究条件,申请人应证明这样做的必要性和科学合理性。建议采用详细的方案和控制良好的研究程序,以确保精确控制给药、取样和其他IVPT研究参数,以及实验偏差的潜在来源。 The validation of the IVPT method should incorporate specific qualifications and controls (described below), performed using a validated sample analytical method, as applicable. The qualification of an IVPT method parameter refers to the process of defining what attributes make it suitable to perform its function in the IVPT method. For example, when repeated measurements of the temperature at the surface of skin mounted in a diffusion cell demonstrate that an IVPT equipment can maintain the skin surface temperature in the range of 32°C ± 1°C, the results can support a demonstration that the equipment is qualified to perform its function in an IVPT method for which a method parameter is the control of skin surface temperature in the range of 32°C ± 1°C across the relevant study duration. IVPT方法的验证应包括具体的限定条件和控制(如下所述),如适用,使用经验证的样品分析方法进行。IVPT方法参数的限定是指定义哪些属性适合在IVPT方法中执行其功能的过程。例如,当对安装在扩散池中的皮肤表面温度重复测量的结果表明IVPT设备可以将皮肤表面温度保持在32°C±1°C的范围内时,结果可以证明该设备有资格在IVPT方法中执行其功能,其中方法参数是在相关研究持续时间内将皮肤表面温度控制在32°C±1°C范围内。 A.Equipment Qualification Suitable equipment for the IVPT method includes various models of VDCs and flow-through diffusion cells. The operating principles and specific test procedures differ among the various equipment; relevant procedures from the manufacturer may be used for installation, operational, and performance qualifications. The laboratory qualification of each diffusion cell should, at minimum, include 1) measurements of the diffusional area of the orifices of the donor and receptor compartments between which the skin is mounted, 2) the empirically measured volume of the receptor solution compartment in each VDC or the empirically measured outflow tube length for each flow-through diffusion cell, 3) the stability of the temperature measured at the skin surface (e.g., 32°C ± 1°C) across a relevant duration (e.g., 48 hours), and 4) the rate of stirring or agitation in VDCs, or the flow rate for flow-through diffusion cells, as applicable. 适用于IVPT方法的设备包括各种型号的VDC和流通扩散池。不同设备的工作原理和具体测试程序不同;制造商的相关程序可用于安装、操作和性能鉴定。每个扩散池的实验室鉴定至少应包括:1)测量皮肤安装在供体和受体隔间的孔口扩散面积,2)每个VDC中受体溶液隔间的经验测量体积或每个流通扩散池的经验测量流出管长度,3)在相关持续时间(例如48小时)内在皮肤表面测量的温度(例如32°C±1°C)的稳定性,以及4)VDC中的搅拌或搅拌速率,或流通扩散池的流速(如适用)。 If information related to the diffusional area of the orifices and the volume of the receptor solution compartment for each diffusion cell is available from the manufacturer, that information should be provided for each relevant diffusion cell, in addition to the empirical measurements made by the laboratory performing the IVPT studies. The equipment should control the diffusion cell temperature so that the skin surface temperature is verified to be stable (e.g., 32°C ± 1°C) for each diffusion cell before dosing (e.g., measured by a calibrated infrared thermometer), and monitored periodically throughout the duration of the experiment by repeatedly measuring the skin surface temperature of a non-dosed control diffusion cell that is run in parallel with the other replicate dosed diffusion cells and connected to the same water bath or thermoregulation system. 如果制造商提供了与每个扩散池的孔口扩散面积和受体溶液隔室体积相关的信息,则除了实验室进行IVPT研究的经验测量之外,还应提供每个相关扩散池的信息。设备应控制扩散池温度,以便在给药前验证每个扩散池的皮肤表面温度稳定(例如,32°C±1°C)(例如,通过校准的红外温度计测量),并在整个实验期间通过重复测量非剂量控制扩散池的皮肤表面温度进行周期性监测,该扩散池与其他重复剂量给药扩散池并联运行并连接到相同的水浴或温度调节系统。 B.Membrane (Skin) Qualification Excised human skin is recommended as the membrane for the IVPT study. The validity of each skin section dosed in the study should be qualified using an appropriate test procedure to eva1uate the stratum corneum barrier integrity. Acceptable barrier integrity tests may be based upon tritiated water permeation, TEWL, or electrical impedance/conductance measured across the skin. The test parameters and acceptance criteria used for the skin barrier integrity test should be justified for the specific method and instrumentation that is used during the study. The skin from all donors whose skin is included in the study should be prepared in a consistent manner and dermatomed to a relatively consistent thickness, within limits specified in the study protocol. The skin thickness should be measured and reported for each skin section included in the study. The assignment of replicate skin sections from a donor to each treatment group should be randomized, as feasible. It is acceptable to balance the distribution of skin thicknesses in each treatment group (test topical product or RS) by a procedure specified in the study protocol. 建议将切除的人体皮肤作为IVPT研究的膜。通过适当的测试程序来评估角质层屏障的完整性,来鉴定研究中使用的每个皮肤切片的有效性。可接受的屏障完整性测试可基于氚水渗透、TEWL或皮肤上测量的电阻抗/电导。用于皮肤屏障完整性测试的测试参数和验收标准应针对研究期间使用的特定方法和仪器进行验证。研究中包括的所有捐献者的皮肤应以一致的方式制备,并在研究方案中规定的范围内保持相对一致的皮肤厚度。应测量并报告研究中每个皮肤切片的皮肤厚度。在可行的情况下,应将供体的复制皮肤切片随机分配给每个治疗组。也可以通过研究方案中规定的程序来平衡每个治疗组(测试局部产品或RS)的皮肤厚度分布。 C.Receptor Solution Qualification The composition and pH of the receptor solution used for the IVPT study should be qualified in relation to its compatibility with the skin as well as the stability and solubility of the drug in that receptor solution. The stability of the drug in the receptor solution samples should be validated as part of the receptor sample analytical method validation. The solubility of the drug in the IVPT receptor solution should be empirically determined in triplicate, to illustrate that the solubility of the drug in the receptor solution exceeds the highest sample concentration in the IVPT pivotal study, ideally by an order of magnitude. The solubility of the drug in the IVPT receptor solution should be sufficient to characterize the higher amounts of drug permeating from the increased drug delivery condition eva1uated in the IVPT sensitivity assessment during IVPT method validation. 用于IVPT研究的受体溶液的组成和pH应符合其与皮肤的相容性以及药物在该受体溶液中的稳定性和溶解度。受体溶液样品中药物的稳定性应作为受体样品分析方法验证的一部分进行验证。药物在IVPT受体溶液中的溶解度应根据经验确定三份,以说明药物在受体溶液中溶解度超过IVPT关键研究中的最高样品浓度,理想情况下为一个数量级。药物在IVPT受体溶液中的溶解度应足以表征IVPT方法验证期间IVPT敏感性评估中评估的药物递送条件增加导致的药物渗透量增加。 The inclusion of 0.1% polyoxyethylene[20]oleyl ether (also known as Oleth-20, Volpo-20, or Brij-20; CAS number 9004-98-2) is recommended to enhance the solubility of physiological buffer based (aqueous) receptor solutions for hydrophobic drugs. If additional solubility is needed, small increases in the concentration of polyoxyethylene[20]oleyl ether (e.g., from 0.1% or 0.2%, which is typically adequate for most hydrophobic drugs, to higher concentrations) are recommended, but should not exceed 6% polyoxyethylene[20]oleyl ether. Other strategies to improve the solubility of the drug in the receptor solution that may have the potential to alter the permeability of the skin (e.g., inclusion of organic solvents and alcohols in the receptor solution) are not recommended and may invalidate the IVPT method. 建议加入0.1%聚氧乙烯[20]油酸酯(也称为Oleth-20、Volpo-20或Brij-20;CAS号9004-98-2),以提高疏水性药物生理缓冲液基(水)受体溶液的溶解度。如果需要额外的溶解度,建议将聚氧乙烯[20]油酸酯的浓度小幅度增加(例如,从0.1%或0.2%,这对于大多数疏水性药物来说通常是足够的,到更高的浓度),但不应超过6%的聚氧乙烯[20]油酸酯。不建议采用其他可能改变皮肤渗透性的提高药物在受体溶液中溶解度的策略(例如,在受体溶液内加入有机溶剂和醇),可能使IVPT方法无效。 The inclusion of an anti-microbial agent in the receptor solution (e.g., ~0.1% sodium azide or ~ 0.01% gentamicin sulfate) is recommended to mitigate potential bacterial decomposition of the dermis and/or epidermis in the diffusion cell, regardless of the study duration. Other antimicrobial agents may also be acceptable, and if used, information should be included in the ANDA to explain the reason for their selection (and for the concentration at which they were used). 无论研究持续时间如何,建议在受体溶液中加入抗菌剂(例如,约0.1%叠氮化钠或约0.01%硫酸庆大霉素),以减轻扩散测试池中真皮和/或表皮的潜在细菌分解。其他抗菌剂也可以接受,如果使用,应在ANDA中包含相关信息,以解释选择的原因(以及使用的浓度)。 D.Receptor Solution Sampling Qualification The accuracy and precision of receptor solution sample collection at each time point should be appropriately qualified. Evidence to qualify a sampling procedure should illustrate that the sampling technique can reliably collect a consistent volume of the sample from the well-mixed volume of the receptor compartment at each sampling event, and that no artifacts are likely to be created by the sampling technique. Information should be included describing the equipment manufacturer’s specification for the accuracy and precision of receptor solution sampling, when available. 应适当限定每个时间点受体溶液样品采集的准确度和精密度。鉴定采样程序的证据应表明,采样技术可以在每次采样中从一定体积、均匀混合的受体室中收集一致体积的样品,并且采样技术不会产生污染。如果可用,应包括描述设备制造商关于受体溶液取样准确性和精密度的规范的信息。 For IVPT studies using a flow-through diffusion cell, it may be appropriate to qualify the lengths of tubing, and their associated dead volumes, to accurately calculate the lag time before a sample elutes through the tubing and is collected. For IVPT studies using a VDC, removal of the entire receptor solution volume and full volume replacement of the receptor solution at each time point may provide optimal solubility sink conditions. The sampling of small aliquots of the receptor solution for an IVPT study may introduce anomalous measurements of apparently negative flux in certain regions of the IVPT study and produce flux profiles that are difficult to interpret. 对于使用流通扩散池的IVPT研究,可能需要确定管道长度及其相关死体积,以准确计算样品通过管道洗脱并收集之前的滞后时间。对于使用VDC的IVPT研究,在每个时间点去除整个受体溶液体积并完全置换受体溶液可以提供最佳溶解度漏槽条件。在IVPT研究中对受体溶液的小等份取样可能会在IVPT研究某些区域引入明显负通量的异常测量,并产生难以解释的通量分布。 E.Environmental Control Ambient laboratory temperature and humidity during the study should be monitored and reported. An environmentally controlled temperature range of 21°C ± 2°C is recommended, and a humidity range of 50% ± 20% relative humidity is recommended, if feasible. 研究期间应监测和报告实验室环境温度和湿度。环境温度宜控制在21°C±2°C,相对湿度宜控制在为50%±20%。 F.Permeation Profile and Range The flux profile and cumulative permeation profile for the IVPT pilot study should be plotted across a range of sampling times, which corresponds to the IVPT pivotal study duration. The calculation of flux and cumulative total permeation is discussed in more detail below. The results of the IVPT pilot study should validate that the selected study parameters are suitable to adequately characterize the permeation profile (the cutaneous pharmacokinetics) of the drug within the selected study duration (the range of sampling time points). IVPT试点研究的通量分布和累积渗透分布应在一定取样时间范围内绘制,这与IVPT关键研究持续时间相对应。下面将更详细地讨论通量和累积总渗透的计算。IVPT先导研究的结果应验证所选研究参数适合于在所选研究时间(采样时间点范围)内充分表征药物的渗透特性(皮肤药代动力学)。 A sufficiently complete flux profile should be adequate to identify the maximum (peak) flux and a decline in the flux thereafter across multiple subsequent time points in the IVPT pilot study. The results of the IVPT pilot study should also validate that the sampling frequency provides suitable resolution to adequately characterize the permeation profile (particularly the flux profile). 在IVPT试点研究中,一个足够完整的通量分布应足以确定多个后续时间点的最大(峰值)通量和此后通量的下降。IVPT试点研究的结果还应验证采样频率提供了适当的分辨率,以充分表征渗透曲线(尤其是通量曲线)。 G.Precision and Reproducibility The flux and cumulative permeation results from the IVPT pilot study (and the eventual IVPT pivotal study) should be calculated, tabulated, and reported for each diffusion cell at each time point, with summary statistics to describe the intra-donor average, standard deviation, and percent coefficient of variation (%CV) among replicates, as well as the inter-donor average, standard error, and %CV. Complete results for all data values used in the calculations should be reported in a clear and organized manner, to facilitate the reconstruction of the flux and cumulative permeation results. The design of the study should be detailed and clear, and data values should be clearly associated with specific donors, replicates, treatment groups, time points, etc IVPT先导研究(以及最终的IVPT关键研究)的通量和累积渗透结果应在每个时间点为每个扩散池进行计算、制表和报告,并提供汇总统计数据,以描述供体内平均值、标准偏差和重复之间的变异系数百分比(%CV),以及供体间平均值和%CV。计算中使用的所有数据值的完整结果应以清晰和有组织的方式报告,以便于重建通量和累积渗透结果。研究的设计应详细、清晰,数据值应与特定捐献者、重复、治疗组、时间点等明确相关。 H.Dose Depletion The recovery of permeated drug in the receptor solution should be characterized in each diffusion cell as the cumulative total permeation of the drug in the receptor solution over the IVPT duration. This may be expressed as a percentage of the nominal amount of drug in the applied dose (which may be estimated based upon the nominal strength of the drug in the topical product and the approximate mass of topical product dosed on the skin). 受体溶液中渗透药物的回收应为在每个扩散池中表征为药物在IVPT持续时间内在受体溶液中的累积总渗透。这可以表示为药物标称量在应用剂量中的百分比(可以基于局部产品中药物的标称强度和皮肤上施用的局部产品的近似质量来估计)。 For example, if 10 mg of a topical product containing 5% drug was dosed on the membrane, the amount of drug in the applied dose may be estimated to be 0.5 mg (or 500 µg). If a cumulative total of 10 µg of drug diffused into the receptor solution across a 48-hour duration of the IVPT, it would be possible to estimate that the 500 µg dose would have been depleted by approximately 10 µg, amounting to an approximately 2% dose depletion. The average percentage dose depletion may thereby be estimated (not accounting for skin content) and should be reported. 例如,如果将含有5%药物的10mg局部产品应用在膜上,则应用剂量中的药物量估计为0.5mg(或500µg)。如果在IVPT的48小时持续时间内,累计10µg药物扩散到受体溶液中,可以估计500µg剂量将消耗约10µg,相当于约2%的剂量消耗。由此可以估计平均剂量消耗百分比(不考虑皮肤含量),并应予以报告。 I.Discrimination Sensitivity and Selectivity The discrimination ability of the IVPT method may be described using two concepts: sensitivity and selectivity. The IVPT sensitivity studies are necessarily performed during IVPT method development to establish IVPT method parameters like the dose amount, dose duration, study duration, etc. However, the analysis of the results from these studies is qualitative in nature, and they need not be repeated during the IVPT method validation phase. IVPT方法的鉴别能力可以用两个概念来描述:灵敏度和选择性。IVPT方法开发期间必须进行IVPT灵敏性研究,以确定IVPT方法参数,如剂量、剂量持续时间、研究持续时间等。然而,这些研究结果的分析本质上是定性的,在IVPT方法验证阶段无需重复验证。 The IVPT sensitivity studies are typically performed toward the end of the IVPT method development phase, and a key purpose of these studies is to incorporate the final IVPT method parameters for the target dose and dose duration to be used in the pivotal study so that the IVPT sensitivity studies can support a demonstration of the validity of the final IVPT method. Therefore, IVPT sensitivity studies are described within this section of the guidance in the context of IVPT validation (rather than method development) to avoid dissociating the discussions of IVPT sensitivity (which is performed to establish the suitability of the final IVPT method parameters) and IVPT selectivity (which is performed once the final IVPT method parameters are established, and which is based upon the IVPT pilot study that is performed as part of the IVPT method validation). With the exception of the alternative dose amounts or dose durations used in the IVPT sensitivity study, it is important that the IVPT method parameters are consistent across the IVPT sensitivity, pilot, and pivotal studies (including the anatomical region specified in the study protocol (e.g., posterior torso), the skin source, and skin preparation). IVPT灵敏度研究通常在IVPT方法开发阶段的末尾进行,这些研究的一个关键目的是将最终IVPT方法参数的目标剂量和剂量时间用于关键研究,IVPT灵敏性研究可以支持证明最终IVPT方法的有效性。因此本节指南在IVPT验证(而非方法开发)的背景下描述了IVPT灵敏度研究,以避免将IVPT灵敏度(用于确定最终IVPT方法参数的适用性)和IVPT选择性(一旦确定了最终IVPT方法参数,即进行该试验,并基于IVPT试验研究,该试验研究是IVPT方法验证的一部分)的讨论分开。除了IVPT敏感性研究中使用的替代剂量或剂量持续时间外,重要的是IVPT方法参数在IVPT灵敏度、先导性和关键性研究(包括研究方案中规定的解剖区域(如躯干后部)、皮肤来源和皮肤制备)中保持一致。 1.IVPT Sensitivity IVPT sensitivity is the ability of the IVPT method to detect changes in the cutaneous pharmacokinetics of the drug as a function of differences in drug delivery. If the IVPT method consistently demonstrates higher and lower flux profiles (i.e., higher and lower values for IVPT endpoints) in response to increased and decreased drug delivery, respectively (or in response to other conditions expected to increase and decrease drug delivery, respectively), the IVPT method may be considered sensitive. IVPT灵敏度是IVPT方法检测药物的皮肤药代动力学变化作为药物传递差异的功能的能力。如果IVPT方法始终显示出较高和较低的通量分布(即IVPT终点的高和低),分别对药物递送的增加和减少作出反应(或对预期分别增加和减少药物递送量的其他条件作出反应),则IVPT方法可能被认为是灵敏的。 There are a few potential approaches by which to produce the differences in drug delivery that can be differentiated by a suitably discriminating IVPT method. Regardless of the approach used, the differences in the IVPT permeation profiles are not necessarily expected to be specifically proportional to differences in the dose amount, dose duration, or product strength. For example, three-fold differences in the dose amount (even if outside the recommended target dose range) may provide distinct flux curves but may not result in three-fold differences in the IVPT endpoints because the skin barrier may be rate-limiting both in vitro and in vivo. 有几种潜在的方法可以产生药物递送的差异,这些差异可以通过适当鉴别的IVPT方法进行区分。无论采用何种方法,IVPT渗透曲线的差异不一定与剂量、剂量持续时间或产品强度的差异成正比。例如,剂量的三倍差异(即使在推荐的目标剂量范围之外)可以提供不同的通量曲线,但不会导致IVPT终点的三倍差别,因为皮肤屏障在体外和体内都可能是限制速率的因素。 In other words, if the target dose for the pivotal IVPT study was 10 mg/cm2 , a 3-fold lower dose would be ~3 mg/cm2 and a 3-fold higher dose would be 30 mg/cm2 ; thus, an IVPT sensitivity study might compare the flux profiles from 3, 10, and 30 mg/cm2 doses of the topical product. Similarly, if the target dose for the pivotal IVPT study was 15 mg/cm2 , a 3-fold lower dose would be 5 mg/cm2 and a 3-fold higher dose would be 45 mg/cm2 ; thus, an IVPT sensitivity study might compare the flux profiles from 5, 15, and 45 mg/cm2 doses of the topical product. An IVPT sensitivity study performed with multiple skin donors (e.g., 4–6 skin donors) and a minimum of four replicate skin sections per donor per treatment group is recommended. 换言之,如果关键IVPT研究的目标剂量为10 mg/cm2,则低3倍的剂量为~3 mg/cm2且高3倍的浓度为30 mg/cm2;因此,IVPT敏感性研究可以比较3、10和30 mg/cm2剂量的局部产品的通量分布。类似地,如果关键IVPT研究的目标剂量为15 mg/cm2,低3倍的剂量为5 mg/cm2而高3倍的浓度为45 mg/cm2;因此,IVPT敏感性研究可能会比较5、15和45 mg/cm2剂量的局部产品的通量分布。建议对多个皮肤捐献者(例如4-6个皮肤捐赠者)进行IVPT灵敏度研究,每个治疗组每个捐献者至少四个重复皮肤切片。 Modulation of Dose Amount: An IVPT method development study with different dose amounts may provide supportive evidence that the IVPT methodology is sensitive to differences in drug delivery. 剂量调节:不同剂量的IVPT方法开发研究可能提供支持性证据,证明IVPT方法对药物递送的差异敏感。 This approach is well suited to topical products that contain volatile components that evaporate from the formulation following dose application to the skin. Modulating the dose amount for such topical products effectively alters the thickness of the applied dose. The majority of volatile components from a thinner dose will tend to evaporate more rapidly (compared to a thicker dose), and a thinner dose will tend to deliver less drug into the skin (and/or for a shorter duration) compared to a thicker dose. 这种方法非常适合于含有挥发性成分的局部产品,这些挥发性成分在涂抹到皮肤后从配方中蒸发。调节这种局部产品的剂量有效地改变了应用剂量的厚度。较薄剂量的大部分挥发性成分往往会蒸发得更快(与较厚剂量相比),较薄剂量进入皮肤的药量较少(和/或持续时间更短)。 Modulating the dose amount can be an effective technique to modulate differences in drug delivery for formulations with volatile components, like gels, lotions, and many creams. However, modulating the dose amount may not necessarily produce perceptible differences in drug delivery for topical products like petrolatum-based ointments, or other types of topical products that do not evaporate on the skin, or that may not experience dose-dependent differences in metamorphosis that can alter the rate and extent of drug delivery. 调节剂量可以是一种有效的技术,可以调节含有挥发性成分的制剂(如凝胶、乳液和许多乳膏)的药物递送差异。然而,调节剂量并不一定会对局部产品(如基于凡士林的软膏)或其他类型的局部产品(不会在皮肤上蒸发)产生明显的药物递送差异,或者可能不会经历可改变药物递送速率和程度的剂量依赖性变态差异。 Modulation of Dose Duration: For many topical products, it may be more effective to modulate the dose duration, instead of the dose amount, to produce differences in drug delivery and associated changes in the cutaneous pharmacokinetics of the drug. 剂量持续时间的调节:对于许多外用产品,调节剂量持续时间而不是剂量可能更有效,以产生药物递送的差异和药物的皮肤药代动力学的相关变化。 An IVPT method development study with a controlled dose amount (e.g., 15 mg/cm2 ) dosed for different durations (e.g., 2 hours, 6 hours, and 12 hours) may be well suited to provide supportive evidence that the IVPT methodology is sensitive to differences in drug delivery from many topical products. The scenario described in this example would support an IVPT study design where a topical product dose of 15 mg/cm2 is dosed for 6 hours (the target duration for the IVPT study) and then wiped off. The applied dose may be removed with a series of cotton-tipped swabs, one or more of which may be dry and one or more of which may be moistened (e.g., with a soap solution or water). The initial (dry) swab typically removes the bulk of the dose and subsequent swabs are used to remove the residual dose (i.e., the residue of the topical product which may otherwise continue to deliver drug into the skin) and/or to rinse the skin. 具有不同持续时间(例如,2小时、6小时和12小时)的受控剂量(例如,15 mg/cm2)的IVPT方法开发研究可能非常适合提供支持性证据,证明IVPT方法对许多局部产品的药物递送差异敏感。本例中描述的方案将支持IVPT研究设计,其中局部产品剂量为15 mg/cm2,持续6小时(IVPT研究的目标持续时间),然后擦掉。可使用一系列棉签去除应用的剂量,其中一个或多个棉签可能干燥,一个或更多棉签可能湿润(例如,用肥皂溶液或水)。初始(干)拭子通常去除大部分剂量,随后的拭子用于去除剩余剂量(即,局部产品的残留物,否则可能继续将药物输送到皮肤中)和/或冲洗皮肤。 To support a demonstration of the sensitivity of the IVPT study, the permeation profile produced by the target dose duration for the IVPT study (e.g., 6 hours) should be compared with a shorter dose duration (e.g., 2 hours) that is expected to perceptibly decrease the drug delivery, and also be compared with a longer dose duration (e.g., 12 hours) that is expected to perceptibly increase the drug delivery. Thereby, the three dose durations compared in the IVPT sensitivity study are designed to produce perceptible changes in the cutaneous pharmacokinetics of the drug as a function of differences in drug delivery, and thereby support a demonstration of the sensitivity of the IVPT method. 为了证明IVPT研究的灵敏度,应将IVPT研究目标剂量持续时间(例如6小时)产生的渗透曲线与预期明显降低药物递送的更短剂量持续时间进行比较,并且还与预期显著增加药物递送的更长剂量持续时间(例如12小时)相比较。因此,IVPT灵敏度研究中比较的三个剂量持续时间旨在根据药物递送差异产生药物的皮肤药代动力学的明显变化,从而支持IVPT方法的灵敏度证明。 The specific dose durations may be selected based upon an initial exploratory IVPT study performed during IVPT method development that characterizes the permeation profile when the dose is left on the skin for a longer duration (e.g., 24 or 48 hours). An important feature of the results from such an IVPT study is the duration of the initial phase of the permeation profile, when the flux is increasing at a relatively rapid rate. 具体剂量持续时间可以基于IVPT方法开发期间进行的初始探索性IVPT研究来选择,该研究表征了当剂量在皮肤上停留更长时间(例如24或48小时)时的渗透曲线。这种IVPT研究结果的一个重要特征是当通量以相对较快的速率增加时,渗透曲线初始阶段的持续时间。 For example, if such an exploratory study indicates that the flux increases on a steep slope until approximately 12 hours, and then continues to deliver the drug at a gradually increasing rate thereafter, it may suggest that the permeation profile for a dose duration of longer than 12 hours (e.g., 24 hours) may not be perceptibly different from that of the 12- hour dose duration, especially when compared in a relatively small number of donors and replicates (e.g., four donors with four replicates each per dose duration). It may also suggest that a 12-hour dose duration may be a good choice for the longest of the three dose durations in the IVPT sensitivity study. 例如,如果这样的探索性研究表明,通量以陡峭的斜率增加,直到大约12小时,然后继续以逐渐增加的速率递送药物,这可能表明,超过12小时(例如24小时)的剂量持续时间的渗透曲线可能与12小时剂量持续时间没有明显差异,特别是在相对较少数量的供体和复制体(例如每个剂量持续时间具有四个复制体的四个供体)中进行比较时。这也可能表明,在IVPT敏感性研究中,12小时的剂量持续时间可能是三个剂量持续时间中最长的一个很好的选择。 The target dose duration should be selected based upon considerations like the sensitivity of the sample analytical method, the ability to produce a permeation profile that can be perceptibly discriminated from that produced by the longer (12 hour) dose duration, and/or the labeled use of the topical product (which may indicate that the topical product should be reapplied every 4–6 hours). 目标剂量持续时间的选择应基于以下考虑因素,如样品分析方法的灵敏度、产生渗透曲线的能力,该渗透曲线可明显区别于较长(12小时)剂量持续时间产生的渗透曲线,和/或局部产品的标记使用(这可能表明局部产品应每4-6小时重新给药一次)。 The shortest of the three dose durations in the IVPT sensitivity study should be selected based upon the sensitivity of the sample analytical method and its ability to produce a permeation profile that can be perceptibly discriminated from that produced by the target (6 hour) dose duration. 在IVPT灵敏度研究中,三个剂量持续时间中最短的时间选择,应根据样品分析方法的灵敏度,以及可明显区别于目标维持时间(6小时)所产生的渗透曲线的能力来选择。 · Modulation of Product Strength: To validate the sensitivity, specificity, and selectivity of an in vitro release test (IVRT) method, altered strength formulations are routinely prepared. While it may seem convenient to use these altered strength formulations in an attempt to demonstrate the sensitivity and selectivity of an IVPT method, doing so may not produce the desired outcomes. There may be circumstances when this strategy may produce perceptibly different permeation profiles, however, in many instances, the resulting permeation profiles may not be perceptibly different when compared in a relatively small number of donors and replicates (e.g., four donors with four replicates each per topical product strength). In general, the modulation of topical product strength to support a demonstration of IVPT sensitivity is not recommended because it may not consistently produce the expected increase or decrease in drug delivery; however, in certain situations, higher and lower strength formulations (relative to the nominal strength of the RS) may suitably increase and decrease the drug delivery and cutaneous pharmacokinetics relative to that from the nominal strength topical product. •调节产品规格:为验证IVRT方法的灵敏度、专属性和选择性,通常采用改变配方制剂规格的方法。虽然采用改变配方制剂的规格的方法来证明IVPT方法的灵敏度和选择性似乎很方便,但这种方式可能不会产生预期的结果。在某些情况下,这种策略可能会产生明显不同的渗透曲线,然而,在很多情况下,由于在对比研究中采用的供体组和重复数较少(如,每种外用制剂规格采用4个供体组,每组供体4个重复),并不能产生明显不同的渗透曲线。通常,不建议通过调整外用制剂规格的方法以证明IVPT的灵敏度,因为它可能不会持续产生预期的增加或减少的药物递送;然而,在某些情况下,相较于外用制剂的目标规格,较高和较低规格的配方制剂(相对于对照制剂(RS)的规格)可以适当地增加和降低药物递送和皮肤药代动力学。 2.IVPT Selectivity/IVPT选择性 IVPT selectivity is the ability of the IVPT method to discriminate the cutaneous pharmacokinetics of the drug between the RS and a topical product or formulation that exhibits differences in drug delivery relative to the RS. The IVPT pilot study with the parallel assessment of the RS, the test topical product, and a third topical product or formulation that is known or designed to be different from the RS may provide supportive evidence that the IVPT methodology is selective for differences in drug delivery. Topical product batch information for all topical product lots used in IVPT method development, validation and pilot studies, as applicable, should be submitted in the study reports. The topical product information should include, but not be limited to, information about the batch formula, manufacturing date, batch size, altered manufacturing processes (if applicable) and, if available, potency and content uniformity. The eva1uation of inequivalence may be based upon a qualitative or quantitative comparison of the permeation profiles and/or the IVPT endpoints. IVPT选择性是IVPT方法区分“对照制剂(RS)“和“与RS在药物递送方面存在差异的外用制剂或配方”在药物皮肤药代动力学差异的能力。在IVPT初步研究中,通过将RS、自研外用制剂和“已知或设计不同于RS”的第三种外用制剂或配方进行平行评估,提供支持性证据,说明IVPT方法对药物递送的差异具有选择性。如适用,应在研究报告中递交,IVPT方法开发、验证和初步研究中用到的所有外用制剂的相关批信息,包括但不限于:批配方、生产日期、批量、变更的生产工艺(如适用),以及效价和含量均匀度(如有)。可基于渗透曲线和/或IVPT终点的定性或定量比较进行不等效性评估。 J.Robustness/耐用性 A primary assumption related to robustness testing is that the test system performs consistently when all system variables (e.g., temperature, stirring rate) are at nominal settings. A value of robustness testing is that it can verify whether the system continues to provide a consistent output when specific variables are slightly altered, thereby qualifying operational ranges for those variables. However, the variability inherent in the permeability of human skin, whether in vitro or in vivo, may not be compatible with the primary assumption related to the consistency of the test system. 与耐用性测试相关的一个主要假设是,当所有系统变量(如:温度、搅拌速率)处于标准设置时,测试系统的性能一致。耐用性测试意义在于,它可以验证当特定变量略有改变时,系统是否能提供一致的输出结果,从而确定这些变量的操作范围。然而,无论是体外还是体内,人体皮肤渗透性固有的变异性可能与与测试系统一致性相关的主要初始的假设不兼容。 Nonetheless, results from studies during IVPT method development that appear to support the robustness of the IVPT method or system should be reported, if relevant. For example, an IVPT method may be robust to substantial variations in the stirring rate of the receptor compartment. Similarly, the permeation profile of a drug into and through human skin may appear to be robust to certain differences in the topical product strength. Ultimately, because it may not always be feasible to validate the robustness of IVPT method parameters, IVPT study procedures should be controlled as precisely as possible. 尽管如此,如果相关,应报告IVPT方法开发期间得到的关于支持IVPT方法或系统耐用性的研究结果。例如,IVPT方法对于接收室搅拌速率的显著变化具有耐用性。与其类似地,药物进入并通过人体皮肤的渗透曲线,可能对外用制剂规格的改变表现出耐用性。所以,对于验证IVPT方法参数的耐用性并不总是可行的,在IVPT研究中应尽可能精准地控制IVPT研究程序。 V. SAMPLE ANALYTICAL METHOD VALIDATION/样品分析方法验证 While exploratory studies performed during IVPT method development may use an unvalidated sample analytical method, it is essential that all studies conducted as part of the IVPT method validation use a validated sample analytical method. A validated IVPT method should use a validated sample analytical method (e.g., HPLC/MS or UPLC/MS). Therefore, a discussion of the sample analytical method for the IVPT method is included in this guidance under this section on IVPT method validation 虽然在IVPT方法开发的探索性研究中,可采用未经验证的样品分析方法,但作为IVPT方法验证的一部分,所进行的IVPT研究都必须采用经过验证的样本分析方法。经验证的IVPT方法应使用已验证的样品分析方法(如:HPLC/MS或UPLC/MS)。因此,本指南中关于IVPT方法验证的章节中包含了对IVPT方法样品分析方法的讨论。 However, the study protocols and reports related to the IVPT method are distinct from those for the sample analytical method that is used to quantify drug concentrations in IVPT receptor solution samples. The validation of a sample analytical method, in and of itself, does not demonstrate the validity of an IVPT method. Separate and specific reports should be submitted for the validation of the sample analytical method (e.g., HPLC/MS or UPLC/MS) and for the validation of the IVPT method. 然而,与IVPT方法相关的研究方案和报告与用于量化IVPT接收液样品定量的分析方法不同。样品分析方法的验证本身并不能证明IVPT方法的有效性。因此,应分别提交IVPT方法验证报告和样品分析方法(如:HPLC/MS或UPLC/MS)。 Any results from studies of the IVPT method that are performed during method development using a different sample analytical method than that which is ultimately validated, cannot support a demonstration of the validity of the IVPT method. Information should be provided in the IVPT method validation report referencing the (separate) sample analytical method validation, and clearly indicate that all relevant results in the IVPT method validation report were obtained using a validated sample analytical method (as opposed to a sample analytical method with different parameters than those which were validated). 如果在方法开发过程中,使用的样品分析方法与最终验证的样品分析方法不同,那么与其相关的IVPT方法研究结果则不能用于支持论证IVPT方法的有效性。应在IVPT方法验证报告中,提供参考的样品分析方法验证的信息,并明确表明IVPT方法验证报告中的所有相关结果均采用经验证的样品分析方法(不是与经验证的样品分析法有不同参数的样品分析放法)获得的。 The receptor sample analysis procedures (e.g., typically involving an HPLC/MS or UPLC/MS system) should be performed using chromatography software (e.g., a chromatography data system) with audit trails, and should include a multi-point (6–8 concentration) calibration curve with suitable quality control samples, and should be validated in a manner compatible with the FDA guidance for industry Bioanalytical Method Validation (May 2018). 接收液样品的分析方法(如:通常为HPLC/MS或UPLC/MS系统),应使用具有审计追踪的色谱软件(如,色谱数据系统),并应包括具有适当质量控制样品的多点(6~8个)校准曲线,并应符合FDA生物分析方法验证行业指南要求。 The validation of the receptor sample analytical method should include relevant qualifications of dilution integrity, if applicable, as well as stability assessments with the highest relevant temperature in the receptor solution for the longest relevant duration; the highest relevant temperature may be warmer than 32°C because the temperature of the receptor solution is often higher than the temperature at the surface of the skin, and the longest relevant duration may be the longest interval between sampling time points for methods in which the entire receptor solution is replaced at each sampling time point, or it could be longer in scenarios with only partial sampling of the receptor solution (e.g., 34°C for 48 hours). 接收液中样品分析方法的验证应包括稀释完整性确认(如适用),以及样品在最高相关温度的接收液中放置最长时间的稳定性评估;最高相关温度可略高于32°C,因为接收液的温度通常高于皮肤表面的温度。对于在每个取样时间点替换整个接收液的情况,最长相关时间为各相邻取样时间点中,间隔最长时间;但对于接收液部分取样的情况,时间可能更长(例如34°C放置 48h)。 If the samples are processed in specific ways for analysis (e.g., by drying and reconstituting the receptor samples in a smaller volume to concentrate the sample and increase the effective analytical sensitivity, or by dilution of receptor solution samples into the validated curve range of the sample analytical method) those procedures should be validated (e.g., by qualifying the dilution integrity during the sample analytical method validation). The stability of the drug in the receptor solution sample should be validated in a receptor solution matrix that has been exposed to the underside of the skin in a diffusion cell under conditions relevant to the IVPT pivotal study. 如果样品以特定的分析方法进行处理(如:通过将样品干燥后重新以较小的体积溶剂配制以提高有效分析灵敏度,或通过稀释接收液样品,使其达到已验证分析方法的曲线范围内),则应确认其处理方法(如:在样品分析方法验证期间确认稀释完整性)。接收液样品中药物的稳定性,应在与IVPT正式研究相关的条件下,在扩散池中皮肤下侧接触的接收液基质中进行。 VI. IVPT PIVOTAL STUDY/IVPT正式研究 The IVPT pivotal study protocol should incorporate considerations relevant to BE studies, in general IVPT正式研究方案通常应包括与BE研究相关的考虑因素 A. Handling and Retention of Samples/样品的处理与保存 Refer to 21 CFR 320.38, 320.63 and the FDA guidances for industry Handling and Retention of BA and BE Testing Samples (May 2004) and Compliance Policy for the Quantity of Bioavailability and Bioequivalence Samples Retained Under 21 CFR 320.38(c) (August 2020), as applicable, regarding considerations for retention of study drug samples and to 21 CFR 320.36 for requirements for maintenance of records of BE testing. Retention samples should be randomly selected from the drug supplies received before allocating topical product units for use in an IVPT study in which the test topical product and RS are compared. 参考21 CFR 320.38,320.63和FDA行业指南《生物利用度(BA)和生物等效性(BE)研究中试验样品的处理和保存》(2004年5月)和《21CFR 320.38(c) BE样品留存的数量及生物利用度》(2020年8月),关于保留研究药物样品的考虑以及21 CFR 320.36关于保存BE检测记录的要求(如适用)。在采用自研外用制剂和RS进行IVPT对比研究前,应从收到的药品中随机选择样品进行留样。 B. Control of Study Procedures/研究程序的控制 Study procedures that have the potential to influence the results of the study should be appropriately controlled. Also, experimental observations that may have the potential to influence the interpretation of the study results, as well as any protocol or standard operating procedure (SOP) deviations, should be reported. 应对可能影响研究结果的研究程序进行适当控制。此外,应报告可能影响研究结果解释的实验观察结果,以及任何方案或标准操作程序(SOP)发生偏差。 Control of procedures related to the skin include the consistent control across the study of the skin preparation (e.g., dermatoming of skin sections) and the thickness of skin sections mounted on diffusion cells, as well as the skin storage conditions, including the duration for which the skin was frozen and the number of freeze-thaw cycles to which the skin was exposed. Skin from the same anatomical location should be used from all donors, and the demographics (age, race, sex) should be reported for all donors. Also, the IVPT sensitivity, pilot, and pivotal studies should use skin from the same anatomical site; otherwise, if skin from different anatomical sites is used across the different study phases, it may not be possible for the results of the IVPT sensitivity and pilot studies to support a demonstration of the discrimination ability of the IVPT method used for the pivotal study because the method parameters would not be aligned across the respective studies. Similarly, if a non-rate-limiting support membrane is used beneath the skin section (e.g., a filter membrane used in a validated IVRT method for the same topical product) then it should be used in a consistent manner for the IVPT sensitivity, pilot, and pivotal studies. 与皮肤相关的程序的控制,包括相同的皮肤处理方法(如:皮肤的剥离)和安装在扩散测试池上的皮肤切片的厚度的研究中的一致性,及皮肤储存条件,例如皮肤冷冻的储存时间和取出的冻融循环次数。所有供给皮肤均应采用相同解剖位置,并报告所有供体的人口统计信息(年龄、种族、性别)。此外,在IVPT灵敏度、初步实验和正式研究,应采用同一解剖部位的皮肤;否则,如果在不同的研究阶段使用不同位置解剖部位,IVPT灵敏度和初步试验的结果可能不足以支持用于正式研究的IVPT方法的区分力的论证,因为方法参数在各个研究中不一致。同样,如果在皮肤部分下方使用非速率限制性支撑膜(如:同类IVRT方法验证研究中使用的滤膜),则与IVPT灵敏度、初步试验和正式研究中一致。 Control of procedures related to the dose include the control of the area of dose application, the dose amount, the dosing technique, the dose duration, and the blinding and randomization procedures for dosing. The test topical product and RS should be dosed in an identical and consistent manner for all diffusion cells in the study. Differences in dosing technique may alter the metamorphosis of the dosage form on the skin, and inconsistencies in the diameter of the area dosed on each diffusion cell may significantly influence the dosed area and contribute to errors in the calculation of flux. 与剂量或上样相关的控制程序,包括:对上样面积、上样量、上样技术、剂量维持时间的控制,以及在研究中每个扩散池采用的盲法和随机化方法的一致性。不同的上样技术可能改变上样到皮肤上剂型的形态,扩散池孔口扩散面积的不一致可能会显著影响上样面积,从而导致通量计算的偏差。 Control of procedures related to sampling include the control of sampling time precision, the sampling technique, the duration of sampling and replacement of receptor solution, the sample volume or flow rate, and sample handling and storage. 与取样相关的程序控制包括取样时间精度、取样技术、取样和替换接收液的时间间隔、取样体积或流速,以及样品的处理和存储。 Control of procedures related to the pivotal study should include a non-dosed control skin section from each skin donor, which should be mounted in a diffusion cell and otherwise treated identically to the dosed skin sections, including sampling of the receptor solution at all time points to ensure that drug concentrations monitored in the receptor solution are associated with the dose applied in the IVPT pivotal study, and not drug contamination in the skin from that donor that might permeate into the receptor solution across the duration of the study. A pre-dose “zero” sample collected from each diffusion cell is also recommended, which may identify potential contamination associated with each skin section and/or each diffusion cell. 与正式研究相关的控制程序,应包括来自每个皮肤供体的非剂量对照皮肤部分,包括在所有时间点对接收液进行取样,以确保接收液中监测的药物浓度与IVPT正式研究中应用的剂量相关,而不是研究期间由于皮肤的药物污染渗透进入。建议从每个扩散池中采集“零”浓度样品,用于识别每个皮肤切片和/或每个扩散池的潜在污染。 In addition, investigators should perform the IVPT validation and pivotal studies within a quality management system that includes, but is not limited to, d0cumented procedures for: 此外,研究人员应在一定的质量管理体系条件下,进行IVPT验证和正式研究,该体系包括但不限于: ·Study personnel identification, training, qualification, and responsibilities/ 研究人员的识别、培训、资格和职责 ·Study management and study management personnel responsibilities/研究管理和研究管理人员职责 · Quality control (QC) and QC personnel responsibilities/质量控制(QC)和QC人员职责 · Quality assurance (QA) and QA personnel responsibilities/质量保证(QA)和QA人员职责 ·Use of SOPs /标准操作规程(SOP)的制定 · Use of study protocols/研究方案的制定 · Use of study reports/研究报告的制定 · Maintenance and control of the study facility environment and systems/研究设施环境和系统的维护和控制。 ·Qualification and calibration of instruments and computerized systems/仪器和计算机系统的鉴定和校准。 ·Good d0cumentation practices including, but not limited to, contemporaneous d0cumentation of study procedures and recording of experimental observations or deviations from procedures specified in the study protocol or in relevant SOPs/良好的文件规范,包括但不限于:研究程序的及时记录、实验观察及相关SOPs中规定的程序的偏差。 · Maintenance of suitable records that facilitate the reconstruction of study events and procedures, including study sample handling and storage records (e.g., sample tracking logs), audit trails for sample analysis procedures, control of study materials and reagents, and electronic data control/维护有助于重建研究事件和程序的适当记录,包括研究样本处理和存储记录(如:样本跟踪日志)、样本分析过程的审计跟踪、研究物料和试剂的控制以及电子数据控制。 ·Archival of study records研究记录存档 C. Blinding Procedure/盲法程序 A detailed descr1ption of the blinding procedure should be provided in the study protocol and final report. The packaging of the test topical product and RS should be similar in appearance to maintain adequate blinding of the investigator and any experimental operators. 研究方案和最终报告中应提供盲法程序的详细说明。试验外用制剂和RS的包装应保持相似的外,以确保研究者和任何实验操作人员的充分致盲。 D.Randomization/随机化 The method of randomization should be described in the protocol of the IVPT study and the randomization schedule provided, preferably in a SAS data set in .xpt format (created using the SAS XPORT procedure). It is recommended that an independent third party generate and hold the randomization code throughout the conduct of the study to minimize bias. The applicant may generate the randomization code if not involved in the packaging and labeling of the test topical product and RS dosed in the study. A sealed copy of the randomization scheme should be retained at the study site and should be available to FDA investigators at the time of site inspection to allow for verification of the treatment identity of each skin section. 应在IVPT研究方案中描述随机化方法并提供随机化计划表,推荐以.xpt格式的SAS数据集形式(使用SAS XPORT程序创建)。建议由独立的第三方在整个研究过程中生成并保存随机化代码,以减少偏差。如果研究中未涉及自研外用制剂和RS的包装和标签,申请人可以自行生成随机代码。随机方案的密封副本应保存在研究现场,并应在现场检查时提供给FDA研究人员,以便确认每个皮肤切片的具体信息。 E.Dosing/上样 In the IVPT pivotal study, the test topical product and RS should be dosed in an alternating pattern on successive diffusion cells (skin sections) from each donor. One of two dosing sequences (illustrated below) may be randomly assigned for each donor: 在IVPT正式研究中,对于每个供体组,可以在扩散池(皮肤切片)上以交替给药方式依次放置自研外用制剂和RS。对于每个供体组,可采用下述两个方式中的一个进行随机放样(如下所示): a. ABABAB… b. BABABA… F. Study Design/  研究设计 The IVPT pivotal study should compare the cutaneous pharmacokinetics of the drug from the test topical product versus that from the RS using excised human skin with a competent skin barrier mounted on a qualified diffusion cell system. The IVPT pivotal study should use a design that directly compares the test topical product and RS on skin from the same set of donors, each with the same number of replicate skin sections per donor per treatment group (dosed with either test topical product or RS topical), using the same IVPT method parameters. 在IVPT正式研究中,应采用皮肤屏障完整性良好的离体人类皮肤和经验证的扩散池系统,对自研外用制剂和RS的皮肤药代动力学进行对比研究。在自研外用制剂和RS的对比研究中,每个试验组应采用相同的皮肤供体、相同的皮肤切片重复数,并采用相同的IVPT方法参数。 The IVPT pivotal study design, methodology, and diffusion cell equipment considerations relating to sampling precision should be controlled as precisely as possible. For example, it may be appropriate to stagger the dose application on successive diffusion cells and to synchronize the sampling time points with the dosing time for that diffusion cell, to ensure consistent durations between dosing and sampling of all diffusion cells. 应尽可能精确地控制IVPT正式研究设计、方法和与扩散池设备取样精度。例如,在连续的扩散池上,错开上样时间点,根据上样时间的差异,从而同步取样时间,以确保所有扩散池给药和取样之间的时间间隔一致。 G. Inclusion Criteria/纳入标准 In general, the following inclusion criteria should apply: healthy, normal, barrier-competent skin from male and/or female donors of at least 18 years of age. Inclusion criteria related to donor demographics (e.g., age, race, sex) should be specified in the study protocol and demographic information should be reported for each donor. Additional criteria may be added by the applicant 通常,以下入选标准应适用:来自至少18岁的健康、正常、屏障功能皮肤,雄性和/或雌性供体。应在研究方案中规定符合纳入标准的人口统计信息(如,年龄、种族、性别),并报告每个供体的个人信息。申请人可以增加其它纳入标准。 The skin may be harvested following excision from patients undergoing a surgical procedure or excised from cadavers. A consistent source is recommended for all the skin used. The anatomical region specified in the study protocol (e.g., posterior torso) should be consistent for all donors whose skin is included in the study. 皮肤可以在外科手术的患者或尸体上获取。所有使用的皮肤应有一致的来源。研究方案中规定的解剖区域(如躯干后部)应与研究中包括皮肤的所有供体一致。 The study protocol should specify the inclusion (acceptance) criteria for skin sections based upon the barrier integrity test result, which should be reported for each skin section. 研究方案应根据屏障完整性测试结果规定皮肤部分的纳入(接受)标准。 The study protocol should specify inclusion criteria related to the temperature and duration of skin storage as well as the number of freeze-thaw cycles, all of which should be reported for each donor’s skin. 研究方案应规定与皮肤储存的温度和储存时间以及冻融循环次数纳入相关的标准。 The study protocol should specify the inclusion criteria related to the skin harvesting/processing procedures and skin thickness (e.g., dermatomed skin of 500 μm ± 250 μm thickness) used in the IVPT study. 研究方案应规定与IVPT研究中使用的皮肤采集/处理程序和皮肤厚度(例如,500μm±250μm厚度的皮肤)。 H. Exclusion Criteria/排除标准 In general, the following exclusion criteria should apply. Skin from subjects with a known (history of) dermatological disease should be excluded from the study. Skin with tattoos, stretch marks, or any visible sign of abnormality should be excluded from the study. Skin exhibiting a significant density of terminal hair is not recommended and should be excluded from the study. Additional criteria may be added by the applicant. 通常,采用以下排除标准。患有已知皮肤病(病史)的供体皮肤;有纹身、妊娠纹或任何明显异常迹象的皮肤应;皮肤表现出明显的末梢毛发密度等。申请人可增加其他标准。 While gentle washing or rinsing of the skin surface is appropriate, submerging the skin in an aqueous solution for more than a few minutes may damage the skin barrier and should be avoided; such skin sections should be excluded from the study. Also, skin that has been subjected to shaving with a blade; abrasive polishing; tape-stripping; or cleansing with alcohols, solvents, or other strong solutions that could damage the skin barrier should be excluded from the study. 虽然可以采用温和地清洗或漂洗皮肤表面,但将皮肤浸泡在水溶液中几分钟以上可能会破坏皮肤屏障,应避免该方式。另外,不建议采用用刀片刮过的皮肤;磨料抛光;胶带剥离;或使用酒精、溶剂或其他可能破坏皮肤屏障的强极性溶液进行清洁。 Skin from donors with significant background levels of the drug or other compounds that may interfere with the quantification of the drug in receptor solution samples should be excluded from the study. 来自供体的皮肤具有显著的药物背景水平或其他可能干扰受体溶液样品中药物定量的化合物应排除在研究之外。 Skin from donors exhibiting a high barrier integrity test failure rate among replicate skin sections may be excluded from the study, and skin from an alternative donor may be used instead. 重复皮肤切片中屏障完整性测试失败率高的供体皮肤可能被排除在研究之外,应采用替代供体皮肤。 I. IVPT Endpoints/  IVPT终点 The endpoints for the IVPT pivotal study are based upon parameters that characterize the rate and extent to which the drug permeates into and through the skin and becomes available in the receptor solution. Specifically, the rate of drug permeation is characterized by the flux (J) and the extent of drug permeation is characterized by the total cumulative amount (AMT) of drug permeated into the receptor solution across the study duration. IVPT正式研究的终点,是基于表征药物渗透和通过皮肤中,并进入接收液的速率和程度的参数。具体来说,药物渗透速率以通量(J)进行表征,而药物渗透程度采用整个研究期间渗透到接收液中的药物的总累积量(AMT)进行表征。 The flux (rate of drug permeation) should be plotted as J on the Y-axis in units of mass/area/time (e.g., nanograms (ng)/cm2 /hr) versus time on the X-axis. Flux profiles commonly resemble plasma pharmacokinetic profiles, however, it is important to distinguish that the flux is a rate, rather than a concentration. The extent of drug permeation should also be plotted, as the total cumulative amount (AMT) of drug permeated on the Y-axis in units of mass/area (e.g., ng/cm2 ) versus time on the X-axis. 以通量(药物渗透速率)为纵坐标Y-轴,时间为横坐标X-轴作图;其中Y-轴用“J”标识,以质量/面积/时间(如,纳克/平方厘米/小时)为单位。通量分布模型通常类似于血浆药代动力学分布模型,尽管通量是一个速率单位,并不代表浓度。也应对药物的渗透程度作图,以药物累积渗透量(单位为质量/面积,如纳克/平方厘米)为纵坐标Y-轴,时间为横坐标X-轴。 The flux should be calculated based upon: the receptor sample concentration (e.g., 2.0 ng/mL) at each time point; the precise, empirically measured volume of that specific diffusion cell (e.g., 6.0 mL) which may vary between individual cells; the area of dose application (e.g., 1 cm2 ); and the duration for which the receptor volume was accepting the drug. For example, if the sample exemplified here represented a 2-hour period following dosing, then J would be calculated based upon the values above as: 流量的计算应基于:每个时间点的接收液中的样品浓度(如:2.0 ng/mL);精确、经验性的测量扩散池的体积(如:6.0mL),每个扩散池体积或有不同;上样区域面积(如:1cm2);研究的持续时间。例如,如果这里例举的样品表示给药后2小时内的情况,则J将基于上述值计算为:J = [(2.0 ng/mL) x (6.0 mL)]/(1 cm2 )/(2 hrs) = 6 ng/cm2 /hr This flux should be calculated and reported for each diffusion cell for each sampling interval and plotted across the entire study duration to generate the flux profile for each diffusion cell. The rate calculated above may be plotted at the 2-hour time point, or at the midpoint between 0 and 2 hours (i.e., 1 hour). 应计算并报告各扩散池的所有相邻采样点之间的通量,并绘制整个研究期间所有扩散池的通量曲线。上面计算的速率可以在2小时的实际时间点进行绘制,或者在0到2小时(即1小时)之间的中点绘制。 In addition, the AMT should be calculated and reported for each diffusion cell. This cumulative amount of drug that has permeated (in total across the entire study) should be reported as the AMT endpoint, rather than using a trapezoid rule to calculate the area under the flux curve. 此外,应计算并报告每个扩散池的总累计渗透量(AMT)。AMT终点为药物渗透的累计量(整个研究期间的渗透总量),而不是采用梯形法则计算的通量曲线下的面积。 The maximum flux (Jmax) at the peak of the drug flux profile and the AMT should both be compared for locally-acting test topical products and RSs. This is somewhat analogous to the comparison of the Cmax and AUC for systemically-acting test products and RSs, inasmuch as the pair of endpoints in each case facilitates a comparison of the rate and extent to which the drug from each type of product (locally-acting or systemically-acting) becomes available at the site of action. 应将局部起效的自研制剂和RSs的最大通量(Jmax,药物通量曲线的最高峰)和AMT进行对比。这类似于全身起效的自研制剂和RSs的Cmax和AUC的比较,因为这些终点可分别用于表征各剂型(局部起效或全身起效)药物到达作用部位的速率和程度。 A confidence interval (CI) should be calculated for each IVPT endpoint: 应计算每个IVPT终点的置信区间(CI): a. the natural log-transformed maximum flux (Jmax) 自然对数换算后的最大通量(Jmax) b. the natural log-transformed total cumulative amount (AMT) permeated自然对数换算后的总累积渗透量(AMT) It is the responsibility of the applicant to determine the number of donors required to adequately power the IVPT pivotal study, however, a minimum of four dosed replicates per donor per treatment group (test product or RS) is recommended.  申请人有责任确定足以支持IVPT关键研究所需的供体数量,然而,建议每个试验组(自研制剂或RS)每个供体至少4个重复剂量。 At the completion of the study, if the number of skin replicates is the same for all donors in the test topical product and RS treatment groups in the IVPT study, a statistical analysis for a balanced design is recommended. If skin sections or diffusion cells are excluded from the final statistical analysis because of experimental loss/issues, and the resulting data set is unbalanced, a statistical analysis for an unbalanced design is recommended. 在IVPT研究结束时,如果自研外用制剂和RS试验组中所有供体的皮肤切片重复数均一致,建议采用平衡设计法进行统计分析。如果皮肤切片或扩散测试池因实验损失/问题而被排除在最终统计分析之外,且所得数据集不平衡,则建议对不平衡设计进行统计分析。 Approaches to statistical analysis of the pivotal study are described in section VIII of this guidance. Appendix I provides example SAS code for determining BE with both a balanced dataset and an unbalanced dataset. Appendix II provides numerical examples with simulated data sets. Appendix III provides example R code for determining BE. 在本指南的第VIII部分,对正式研究的统计分析方法进行了描述。附录I中提供了用于测定平衡数据集和非平衡数据集BE的SAS代码示例。附录II中提供了模拟数据集的具体示例。附录III中提供了测定BE的R代码示例。 VII. SUBMITTING INFORMATION ON IVPT STUDIES IN AN ANDA/ANDA中递交的IVPT研究信息 For IVPT studies with topical products submitted in ANDAs that are intended to support a demonstration of BE, detailed study protocols, relevant SOPs, and detailed reports should be submitted for the IVPT method validation (including the IVPT pilot study) and the IVPT pivotal study. In addition, a detailed report describing the IVPT method development should be submitted. These protocols, SOPs, and reports should be submitted in module 5.3.1.2 of the electronic Common Technical d0cument (eCTD) and should describe experimental procedures, study controls, quality management procedures, and data analyses. 对于在ANDA中提交的用于支持BE演示的外用制剂的IVPT研究,应提交详细的研究方案、相关SOP和详细的报告,用于IVPT方法验证(包括IVPT初步研究)和IVPT关键研究。此外,还应提交一份详细的IVPT方法开发报告。这些方案、SOPs和报告应在电子通用技术文件(eCTD)的模块5.3.1.2中递交,并对相关的试验方法、研究控制、质量管理程序和数据分析进行描述。 Note that the study protocols, SOPs, and reports related to the IVPT method are distinct from those for the sample analytical method that is used to quantify drug concentrations in IVPT receptor solution samples (e.g., an HPLC/MS or UPLC/MS method). Separate protocols and SOPs should be submitted for the sample analytical method validation. Sample analytical method development and validation reports, pilot and pivotal IVPT study sample analysis reports, as well as associated SOPs and protocols relevant to the sample analysis of an IVPT study with human skin should be submitted in Module 5.3.1.4 of the eCTD. 注意,用于IVPT接收液中样品浓度的定量分析方法(如,HPLC/MS或UPLC/MS方法)与IVPT方法相关的研究方案、SOPs和报告不同。样品分析方法验证应提交单独的方案和标准操作规程。样本分析方法开发和验证报告、试点和关键IVPT研究样本分析报告以及与人体皮肤IVPT研究的样本分析相关的相关SOP和协议应在eCTD的模块5.3.1.4中提交。 VIII.IVPT PIVOTAL STUDY STATISTICAL ANALYSIS/IVPT正式研究统计分析 The two treatment groups would correspond to the test topical product (T) and the RS (R). The statistical analysis should consider a sample of n donors, for which rT replicate skin sections from the j thdonor (j = 1, ⋯ , n) are available for the T group and rR replicate skin sections from the j th donor (j= 1, ⋯ , n) are available for the R group. Each replicate (i) from each donor (j) should have been randomly assigned to each product. 两个治疗组将对应于自研外用制剂(T)和RS(R)。进行统计分析应考虑以下样本n 组供体,其中rT复制第j个供者的皮肤切片(j = 1.⋯ , n) 适用于T组和rR复制第j个供体的皮肤切片(j = 1.⋯ , n) 可用于R组。每个供体(j)的每个复制品(i)应随机分配给每个产品。 Define the following quantities: 定义如下: Tij= the natural log-transformed IVPT endpoint (Jmax or AMT) dosed with the test topical product for the ith skin replicate from the jth donor (i = 1, 2, ⋯ ,rT,j =1, 2, ⋯ , n) Tij=第j个供体的第i个皮肤复制品的试验外用产品给药的自然对数转换IVPT终点(Jmax或AMT)(i = 1, 2, ⋯ , rT,j =1, 2, ⋯ , n) Rij = the natural log-transformed IVPT endpoint( Jmax or AMT) dosed with the RS for the ith skin replicate from the jth donor (i= 1, 2, ⋯ , rR, j = 1, 2, ⋯ , n) Rij=第j个供体第i次皮肤复制的RS给药的自然对数转换IVPT终点(Jmax或AMT)(i= 1, 2, ⋯ , rR,j= 1, 2, ⋯ , n) rTj= the number of skin replicates from the j th donor dosed with the test topical product ( j = 1, 2, ⋯ , n) rTj=第j个供体用外用制剂(j = 1, 2, ⋯ , n) rRj = the number of skin replicates from the j th donor dosed with the RS ( j=1, 2, ⋯ , n) rRj=第j个供体用RS( j=1, 2, ⋯ , n)给药的皮肤切片的重复数 r∗=rR1+rR2+……+rRn = the total number of skin replicates in the R group r∗ =rR1+rR2+……+rRn=R组皮肤切片总数 n = the number of donors n = 供体组的数量 If the numbers of skin replicates available for the final statistical analysis are the same for the n donors for the T group and the R group, the resulting data set is balanced. For simplicity of notation, the common number of skin replicates for one donor for one treatment group in a balanced data set is denoted as r=rT1+rT2+……=rTn=rR1+rR2=……rRn 如果可用于最终统计分析的皮肤切片重复次数相同的n 组和T组和R组的供体中,所得数据集是平衡的。为方便标记,在平衡数据集中,一个供体对一个治疗组的皮肤重复次数表示为r=rT1+rT2+……=rTn=rR1+rR2=……rRn A diffusion cell may be excluded from among the replicates in a data set when there is a d0cumented observation of a failure (e.g., visual observation that a skin section tears and leaks during the study) or a protocol deviation (e.g., the receptor compartment in a diffusion cell is discovered to be empty at the first sampling time point). In such instances, if sufficient skin remains from the same donor, and no samples from that diffusion cell have been analyzed, a replacement diffusion cell can be set up and studied. Otherwise (if the diffusion cell cannot be replaced) the resulting data set becomes unbalanced. 当有失败的观察记录(如:在研究期间观察到皮肤可见撕裂和泄漏)或方案的偏差(如:扩散测试池中的接收室在第一个取样时间点被发现为空)时,扩散测试池可从数据集中的重复数中排除。在这种情况下,如果来自同一供体的足够皮肤仍充足,并且没有对该扩散池的样品进行分析,则可以采用替代扩散池。若无可替代扩散池,则该结果数据集是不平衡的。 The statistical analysis methods for assessing BE in the cases of a balanced data set and an unbalanced data set are described below. For a donor to be included in the statistical analysis, there should be at least 3 replicate skin sections from the donor for each (T and R) treatment group. 下文描述了在平衡数据集和非平衡数据集情况下评估BE的统计分析方法。对于纳入统计分析的供体,每个(T和R)治疗组的供体应至少有3个重复皮肤切片。 Step 1. Determine Swr,the estimated within-donor standard deviation of the RS, for each of the natural log-transformed IVPT endpoints Jmax and AMT: 步骤1.确定Swr,,每个自然对数变换IVPT终点Jmax和AMT的RS的估计供体内标准偏差: (a) If Swr≥0.294, use the scaled average BE (SABE) approach to determine BE for the individual IVPT endpoint(s) in Steps 2, 3.1, and 4.1 (a) 如果Swr ≥0.294,使用缩放平均BE(SABE)方法确定步骤2、3.1和4.1中单个IVPT终点的BE (b) If Swr<0.294, use the regular average BE (ABE) approach through the two one-sided tests (TOST) procedure (Schuirmann, 1987) to determine BE fo the individual IVPT endpoint(s) in Steps 2, 3.2, and 4.2 (b) 如果Swr<0.294,使用常规平均BE(ABE)方法,通过两个单侧测试(TOST)程序(Schuirmann,1987),在步骤2、3.2和4.2中确定单个IVPT终点的BE Step 2. Determine the point estimate for the mean difference of T and R products (I^), its standard error (se(I^)), and the corresponding degrees of freedom (df∗). 确定T和R乘积平均差的点估计(I^), 其标准误差(se(I^)),以及相应的自由度(df∗) For a balanced data set, determine I^, se(I^) and df∗ by the following: 对于平衡数据集,确定I^, se(I^)和df∗通过以下方式: For an unbalanced data set, approximate I^, se(I^) and df∗ by using PROC MIXED  (or PROC GLM) in SAS. The example code is provided in Appendix I. 对于不平衡数据集,近似I^, se(I^)和df∗ 在SAS中使用PROC MIXED(或PROC GLM)。附录I中提供了示例代码。 Step 3.1. Scaled Average BE (SABE) Approach标度平均BE(SABE)方法 In the SABE approach, the hypotheses to be tested are: 在SABE方法中,要测试的假设是: Rejection of the null hypothesis supports the conclusion of equivalence of the two products. 否定零假设支持两种产品等价的结论。 Determine (1-α)*100% upper confidence bound for (μT-μR)2-θσ2WRbased on Howe’s Approximation (Howe, 1974) (α = 0.05): Note that t(1-α),df∗ is (1-α) ∗ 100th percentile of the Student’s t-distribution with df∗ degrees of freedom and x2(1-α),(r*-n) is (1-α) ∗ 100th percentile of the Chi- square distribution with (r*-n)degrees of freedom Step 3.2. Regular Average BE (ABE) Approach常规平均BE(ABE)方法 In the ABE approach, the hypotheses to be tested are: 在ABE方法中,要测试的假设是: Rejection of the null hypothesis supports the conclusion of equivalence of the two products. 否定零假设支持两种产品等价的结论。 Determine the (1 − 2α)*100% confidence interval for μT-μR (α = 0.05): where t(1-α),df∗ is (1-α) ∗ 100th  percentile of the Student’s t-distribution with df∗ degrees of freedom. Step 4.1. BE Determination with SABE Approach用SABE方法确定BE For the test product to be bioequivalent to the reference standard, both of the following conditions must be satisfied for each IVPT endpoint tested: 为使自制制剂与参比制剂具有生物等效性,每个IVPT试验终点必须满足以下两个条件: a.the 95% upper confidence bound for (μT-μR)2-θσ2WR must be less than or equal to zero (numbers should be kept to a minimum of four significant figures for comparison). b.the point estimate of the T/R geometric mean ratio must fall within the pre- specified limits [1/m,m], where m = 1.2500. Step 4.2. BE Determination with ABE Approach 采用ABE法确定BE测定 For the test product to be bioequivalent to the reference standard, the 90% confidence interval for μT-μR must be contained within the limits [1/m,m] in the original scale for each IVPT endpoint tested, where m = 1.2500. 在IVPT重点测试中,如果μT-μR的90%置信区间必须包含在每个测试IVPT终点原始量表中的限值[1/m,m]内,其中m=1.2500,则证明自研制剂与对照制剂具有生物等效

查看更多
2023-01-07

FDA IVRT测试 工业指南翻译稿

In Vitro Release Test Studies for Topical Drug Products Submitted in ANDAs Guidance for Industry工业指南中ANDAs申请递交的外用提交的外用制剂的体外释放试验研究 INTRODUCTION 绪论 This guidance is intended to assist applicants who are submitting abbreviated new drug applications (ANDAs) for liquid-based and/or other semisolid products applied to the skin, including integumentary and mucosal (e.g., vaginal) membranes, which are hereinafter called topical products. Because of the complex route of delivery associated with these products, which are typically locally acting, and the potential complexity of certain formulations, topical products (other than topical solutions) are classified as complex products. This guidance provides recommendations for in vitro release test (IVRT) studies that can be used to compare a proposed generic (test) topical product and its reference standard (RS) for the purpose of supporting a demonstration of bioequivalence (BE) to the reference listed drug (RLD). The reference standard ordinarily is the RLD.4 本指南旨在帮助申请人提交适用于皮肤的液体和/或其他半固体产品的仿制药申请(ANDA),包括皮肤和粘膜(如阴道),以下称为局部产品。由于与这些产品相关的复杂递送途径(通常是局部作用的)以及某些制剂的潜在复杂性,局部产品(非局部溶液)被归类为复杂产品。本指南为体外释放试验(IVRT)研究提供了建议,该研究可用于比较拟用非专利(试验)局部产品及其参考标准品(RS),以支持证明与参考上市药物(RLD)的生物等效性(BE)。参考标准通常为RLD。 This guidance does not address drug products that are administered via ophthalmic, otic, nasal, inhalation, oral, or injection-based routes, or that are transdermal or topical delivery systems (including products known as patches, topical patches, or extended-release films). 本指南不适用于通过眼、耳、鼻、吸入、口服或注射途径给药的药物产品,也不适用于经皮或局部给药系统(包括贴片、局部贴片或缓释膜产品)。 It is beyond the scope of this guidance to discuss specific topical products to which this guidance applies. FDA recommends that applicants consult this guidance and any relevant productspecific guidances (PSGs) and any other relevant guidances for industry, when considering the design and conduct of IVRT studies that, in conjunction with other studies, as deemed necessary, may be appropriate to support a demonstration that a proposed generic topical product and its RLD are bioequivalent. FDA also recommends that applicants routinely refer to FDA’s guidance web pages, because additional guidances may become available that could assist in the development of a generic topical product. 讨论本指南适用的特定主题产品超出了本指南的范围。FDA建议申请人在考虑IVRT研究的设计和实施时,参考本指南和任何相关的产品特定指南(PSG)以及任何其他相关的行业指南,这些研究与其他研究(如有必要)可能适用于证明拟用仿制药及其RLD具有生物等效性。FDA还建议申请人定期参考FDA的指导网页,因为可能会有其他指导信息,有助于开发通用的外用产品。 In general, FDA’s guidance d0cuments do not establish legally enforceable responsibilities. Instead, guidances describe the Agency’s current thinking on a topic and should be viewed only as recommendations, unless specific regulatory or statutory requirements are cited. The use of the word should in Agency guidance means that something is suggested or recommended, but not required. 一般而言,FDA指南性文件并非具有强制执行的法律职能。实际上,指南描述了管里部门对某一问题当前的思考,并且仅作为建议,除非引用了具体的法规或法定要求,。在指南中使用“应该”一词,意味着建议或推荐,并非要求的意思。 BACKGROUND 背景 This guidance has been developed as part of FDA’s “Drug Competition Action Plan,” which, in coordination with the Generic Drug User Fee Amendments (GDUFA) program and other FDA activities, is intended to increase competition in the marketplace for prescr1ption drugs, facilitate the entry of high-quality and affordable generic drugs, and improve public health. 本指南是作为FDA“药品竞争行动计划”的一部分,该计划配合通用药品用户费用修正案(GDUFA)计划和其他FDA举措,旨在促进处方药市场的竞争,促进高质量和实惠的药品的进入市场,并改善公众医疗。 The Federal Food, Drug, and Cosmetic Act (FD&C Act) generally requires an ANDA to contain, among other things, information to show that the proposed generic drug product (1) is the same as the RLD with respect to the active ingredient(s), conditions of use, route of administration, dosage form, strength, and labeling (with certain permissible differences); and (2) is bioequivalent to the RLD. Thus, an ANDA will not be approved if the information submitted in the ANDA is insufficient to show that the test product is bioequivalent to the RLD. 《联邦食品、药品和化妆品法案》(FD&C法案)通常要求ANDA包含合适的信息,说明:仿制药与RLD相比(1)具有相同的活性成分、使用条件、给药途径、剂型、规格和标签方面(允许存在某些的差异);和(2)与RLD生物等效。因此,如果ANDA中提交的信息不足以证明自制制剂与RLD具有生物等效性,ANDA将不予批准。 An IVRT study may be used to assess the rate of drug release (i.e., release of an active ingredient) from a topical product. Once validated, an IVRT study may also be useful in controlling product quality and/or establishing the acceptability of post-approval manufacturing changes. This guidance focuses on general considerations and recommendations for the method 66 development, method validation, and conduct of IVRT studies that are submitted in ANDAs and intended to support a demonstration of BE. IVRT研究可用于评估局部产品的药物释放速率(即活性成分的释放)。一旦验证,IVRT研究也可用于控制产品质量和/或确定批准后制造变更的可接受性。本指南侧重于方法开发、方法验证和IVRT研究的一般考虑和建议,这些研究在ANDA申请中提交,旨在支持BE的论证。 IVRT METHOD DEVELOPMENT IVRT 方法开发 If an IVRT study is intended to support a demonstration of BE, the IVRT method development report should be submitted in the ANDA to show how the IVRT method was optimized, and to support a demonstration that the method parameters selected for the IVRT are appropriate or necessary, particularly in situations where the method parameters are different from the methods recommended in this guidance and described in the United States Pharmacopeia (USP) General Chapter . The Agency’s interest in reviewing the method development report is to understand why specific IVRT method parameters were selected and whether they are suitably sensitive and reproducible. This method development report should clearly indicate/distinguish the method parameters used for each set of data, illustrate the efforts made to optimize the IVRT method, and demonstrate that the method parameters selected for the IVRT are appropriate. 如果IVRT研究旨在支持BE的论证,则应在ANDA中提交IVRT方法开发报告,以显示IVRT方法是如何优化的,并支持为IVRT选择的方法参数是合适或必要的演示,特别是在方法参数不同于本指南中推荐的方法和美国药典(USP)一般章节中描述的方法的情况下。监管机构在审查方法开发报告时,比较关注IVRT方法参数选择的合理性,以及这些参数是否具有合适的敏感度和重现性。该方法开发报告应明确指出/区分每组数据所用的方法参数,说明为优化IVRT方法所做的努力,并证明为IVRT选择的方法参数是合适的。 Applicants are encouraged to use the recommendations in this guidance, and if an applicant elects to use methods that are different from those recommended in this guidance, the IVRT method development report should demonstrate why it is scientifically justified to use an alternative approach than what is recommended in this guidance or USP to optimize the IVRT method. Specific examples of procedures are described in subsequent sections, to help applicants identify circumstances when information should be submitted in the ANDA to explain why an alternative procedure was utilized. 鼓励申请人使用本指南中的建议,如果申请人选择使用与本指南中建议的方法不同的方法,IVRT方法开发报告应说明选择替代方法,进行IVRT方法优化的科学合理性。后续章节中描述了具体示例,以帮助申请人确定应在ANDA中提交信息的情况,以解释为什么使用替代的方法。 The IVRT method development studies, being exploratory in nature, are often performed using a sample analytical method that is not validated (e.g., a high-performance liquid chromatography (HPLC) or ultrahigh performance liquid chromatography (UPLC) method); also, IVRT method development studies are often conducted in a manner that is not compatible with a quality management system which would otherwise make the evidence generated suitable to support valid conclusions. Such method development studies would not be suitable to demonstrate the validity of an IVRT method, or the associated results. Therefore, although it may appear to be redundant, certain experiments performed during IVRT method development may need to be repeated during IVRT method validation, using appropriate controls, like a validated analytical method and procedures that are compatible with a suitable quality management system. IVRT方法开发研究本质上是探索性的,通常使用未经验证的样品分析方法(例如,高效液相色谱(HPLC)或超高效液相色谱仪(UPLC)方法)进行;此外,IVRT方法开发研究通常以与质量管理体系不兼容的方式进行,所生成的证据不足以支持结论的可靠性。此类方法开发研究不适于证明IVRT方法或相关结果的有效性。因此,尽管这可能显得多余,但在IVRT方法验证期间,可能需要使用适当的控制措施(如与适当的质量管理体系兼容的经验证的分析方法和程序)重复IVRT方法开发期间进行的某些实验。  It is important to clearly segregate and consistently identify those experiments and results that were part of IVRT method development separately from those that were part of IVRT method validation. It is also important to consistently identify all relevant method parameters and experimental conditions/controls for each set of IVRT results. Information in the method development report should clearly identify/distinguish when the results for apparently similar sets of experiments may have been obtained using different method parameters. Method development reports should clarify which sets of diffusion cells were run in parallel or separately (e.g., on separate days). In addition, the sample analytical method (e.g., a HPLC or UPLC method) used to analyze the samples from each set of IVRT experiments should be specified, and the reports should indicate whether or not the sample analytical method was validated (either at the time of sample analysis or subsequently). 将IVRT方法开发过程中的实验和结果与IVRT方法验证过程中的试验和结果分开进行明确区分和一致识别是非常重要的。对于每组IVRT结果,一致地确定所有相关的方法参数和实验条件/对照也很重要。方法开发报告中的信息应明确识别/区分使用不同方法参数可能获得的明显相似实验组的结果。方法的开发报告应澄清平行或单独运行的扩散池组(例如,在不同的日期)。此外,应指定用于分析每组IVRT实验样本的样品分析方法(例如HPLC或UPLC方法),报告应说明样品分析方法是否有经过验证(在样品分析时或随后)。 A. IVRT Method Parameters IVRT 方法参数 Theoretical or empirical information should be provided to explain the selection of IVRT method parameters such as the equipment, product dose amount, sampling times, stirring/agitation rate, etc. When the equipment selected is among the models of equipment in the USP<1724> , Semisolid Drug Products – Performance Tests, and when the product dose amount or stirring rate is a parameter that is fixed (not adjustable) with the selected equipment, it may be sufficient to explain these facts. 应提供理论或经验信息,以解释IVRT方法参数的选择,如设备、上样量、取样时间、搅拌/搅拌速率等。当选择的设备是USP<1724>半固体药物制剂—性能测试中所述设备时,且上样量或搅拌速率与所选的设备匹配(未调节),可充分解释选择的合理性。 It is unconventional for IVRT sampling times to be selected within a study duration of less than 4 hours. This may occur in situations where the fixed product dose was depleted to such a great extent by 4 hours that the release kinetics were no longer linear thereafter (when plotted vs. the square root of time). In such instances, it would be appropriate to explain the efforts that were made to optimize the IVRT method (e.g., using a different diffusion cell equipment that allowed for a larger product dose to be used) so that the sustained steady state release kinetics could potentially be characterized over a conventional IVRT duration of 4 to 6 hours. 通常情况下,IVRT取样时长不应少于4小时。但是,对于某些特定类型的制剂,这可能发生在固定产品剂量在4小时内耗尽到如此大的程度,以至于释放动力学此后不再是线性的情况下(当以释放量对时间的平方根作图)。在这种情况下,应解释为优化IVRT方法所做的努力(例如,使用允许使用更大产品上样量的不同扩散池设备),以便在4至6小时的常规IVRT持续时间内可能表征持续的稳态释放动力学。 B. IVRT Receptor Solution  IVRT接收介质 It is conventional to eva1uate different receptor solutions during IVRT method development (all using the same membrane that has broad chemical compatibility with the receptor solutions eva1uated); these receptor solutions are frequently binary hydro-alcoholic mixtures selected based upon the solubility and stability of the (frequently hydrophobic) drug in the receptor solution. The receptor solutions are conventionally sampled at least hourly across a 6-hour duration. 通常,需要在IVRT方法开发过程中对不同接受介质进行评估都使用与待评估的接受介质具有广泛化学相容性的同一类型膜);这些接受液通常是基于受体溶液中(通常是疏水性的)药物的溶解度和稳定性而选择的二元水醇混合物。接受液通常在6小时持续时间内至少每小时取样一次。 ‍‍‍ Information on the empirical solubility and stability of the drug in the receptor solution, as well as information on the linearity and precision of the resulting drug release rate in an IVRT should be provided to help explain the selection of a receptor solution for the test method. The linearity of the drug release rate (slope) across all time points should ideally have an r2 value of ≥ 0.97. In situations where the solubility of the drug in the receptor solution limits the release kinetics, causing a reduction in the release rate at the last time point(s), it may be appropriate to eva1uate different receptor solutions. It may be appropriate to truncate the IVRT method to a 4- or 5-hour sampling duration if the linearity of the release rate in that truncated duration is improved (exhibiting a higher r2 value), and if other aspects of the release kinetics (e.g., precision) in that receptor solution are optimized compared to other receptor solutions eva1uated. 应提供药物在接受液中的经验溶解度和稳定性的信息,以及IVRT中产生的药物释放率的线性和精密度的信息,用于解释试验方法中接受液选择的合理性。理想情况下,所有时间点的药物释放速率(斜率)应成线性关系(r2值≥ 0.97).如何在药物在接受液中的溶解度限制释放动力学,导致最后一个时间点释放速率降低的情况下,评估不同的接受液可能是更有必要的。如果缩短的时间段内释放速率的线性得到改善(表现出较高的r2值),并且与评估的其他受体溶液相比,该受体溶液中释放动力学的其他方面(例如,精度)得到优化,则将IVRT方法缩短为4小时或5小时的采样时间段可能是合适的。 One advantage of selecting an optimal receptor solution as an initial step in IVRT method development is that it allows for the sample analysis method to be optimized for the selected receptor solution sample matrix before proceeding to an eva1uation of different membranes using that receptor solution. 选择最佳受体溶液作为IVRT方法开发的初始步骤的一个优点是,在使用接受液对不同膜进行评估之前,可先选定的接受液对样品分析方法进行优化。 C. IVRT Membrane IVRT膜 It is conventional to eva1uate different membranes during IVRT method development (all using the same receptor solution); these membranes are frequently synthetic membranes used for the filtration of particulate matter in solutions. IVRT membranes are selected based upon their effective pore size (e.g., 0.45 micrometers (µm)), as well as their expected inertness to binding the drug. Information should be provided in the IVRT method development report on each membrane’s binding to the drug and its chemical compatibility with relevant receptor solution(s) selected for the IVRT method (based on the preceding phase of IVRT method development), as well as information on the linearity and precision of the resulting release rate when each membrane is used in an IVRT, as this information can help to explain why a specific membrane is optimal for the IVRT method. 在IVRT方法开发过程中,通常评估不同的膜(均使用相同的接受液);这些膜通常是用于过滤溶液中的颗粒物质的合成膜。IVRT膜的选择基于其有效孔径(例如0.45微米(µm))以及其与药物结合的预期惰性。IVRT方法开发报告中应提供每种膜与药物的结合及其与为IVRT方法选择的相关受体溶液的化学相容性的信息(基于IVRT方法发展的前一阶段),以及在IVRT中使用每种膜时所产生的释放速率的线性和精度的信息,因为该信息可以帮助解释为什么特定膜对于IVRT方法是最佳的。 IV. IVRT METHOD VALIDATION IVRT  方法验证 The equipment, methodologies, and study conditions used in the IVRT pivotal study should be appropriately validated or qualified. It is conventional to initiate the validation of the sample analytical method (e.g., a HPLC or UPLC method) for the IVRT before initiating the IVRT method validation itself, although certain components of the sample analysis method validation (e.g., stability) often proceed in parallel with the IVRT method validation. If an applicant elects to use equipment, methodologies, or study conditions that are different from those recommended in this guidance or in USP , the applicant should demonstrate why the differences are scientifically justified. It is important to consistently identify all relevant method parameters for each set of IVRT results, making it clear that the results were obtained using the same IVRT method parameters, and clarifying which sets of diffusion cells were run in parallel or separately. Detailed protocols and well-controlled test procedures are recommended to ensure the precise control of dosing, sampling, and other IVRT study parameters, and of potential sources of experimental bias. IVRT关键研究中使用的设备、方法和研究条件应经过合理的验证或确认。在启动IVRT方法验证之前,启动IVRT的样品分析方法(例如,HPLC或UPLC方法)的验证是常规的,尽管样品分析方法验证的某些试验(例如,稳定性)通常与IVRT方法的验证平行进行。如果申请人选择使用的设备、方法或研究条件与本指南或USP中推荐的不同,申请人应证明这些差异在科学上是合理的。重要的是要一致地确定每组IVRT结果的所有相关方法参数,明确结果是使用相同的IVRT方法参数获得的,并阐明哪些组扩散池是平行或单独运行的。建议建立详细的方案和严格控制的测试程序,以确保精确控制上样、取样和其他IVRT研究参数,以及实验偏差的潜在来源。 The qualification of an IVRT method parameter refers to the process of defining what attributes make it suitable to perform its function in the IVRT method. For example, when hourly measurements of the temperature at the membrane surface (when mounted in a diffusion cell) demonstrate that an IVRT equipment can maintain a membrane surface temperature in the range of 32°C ± 1°C across 6 hours, the results can support a demonstration that the equipment is qualified to perform its function in an IVRT method for which a method parameter is the control of membrane surface temperature in the range of 32°C ± 1°C across 6 hours. While an IVRT membrane surface temperature in the range of range of 32°C ± 1°C is appropriate for topical products applied on the skin, for topical products applied on mucosal membranes (e.g., a vaginal gel) the relevant IVRT membrane surface temperature would be 37°C ± 1°C. The validation of the IVRT method should incorporate the following qualifications and controls, performed using validated sample analytical procedures, as applicable. IVRT方法参数的限定是指定义哪些属性适合在IVRT方法中执行其功能的过程。例如,当每小时测量膜表面温度(当安装在扩散池中时)表明IVRT设备可以在6小时内将膜表面温度保持在32°C±1°C的范围内时,结果可以证明该设备在IVRT方法中执行其功能,其中方法参数是在6小时内将膜表面温度控制在32°C±1°C的范围内。尽管IVRT膜表面温度在32°C±1°C范围内适用于涂抹在皮肤上的局部产品,但对于粘膜外用制剂(如阴道凝胶),相关IVRT膜的表面温度应为37°C±1°C。如适用,使用经验证的样品分析方法,在IVRT方法的验证进行以下确认和控制。 A. Equipment Qualification设备确认 Suitable equipment for the IVRT method are described in USP General Chapter . These include different models of a vertical diffusion cell and an immersion cell. Other models of vertical diffusion cells and immersion cells that are essentially the same in design and/or operational principles as those described in USP General Chapter may also be suitable. 在USP <1724>通用章节中有适用于IVRT方法的设备描述。(浅析FDA指导原则中对申报用Franz测试装置的要求)这些包括不同模型的垂直扩散池和浸没池的。在设计和/或操作原理上与USP<1724>通用章节中描述的那些基本相同的垂直扩散池和浸没池的其他模型也可能使用。 The operating principles and specific test procedures differ among the various equipment; relevant procedures from the manufacturer may be used for installation, operation, and performance qualifications. The laboratory qualification of each diffusion cell should, at minimum, include: (1) measurements of the diffusional area of the orifices of the donor and receptor compartments between which the membrane is mounte; (2) the empirically measured volume of the receptor solution compartment/vessel for each diffusion cell; (3) the stability of the temperature measured at the membrane surface (e.g., at 32°C ± 1°C), or just below the membrane, across a relevant duration (e.g., 6 hours); and (4) the rate of stirring or agitation, as applicable. 每种设备的工作原理和特定测试方法不同;制造商的相关程序可用于安装、操作和性能鉴定。每个扩散池的实验室确定,至少应包括:(1)测量供给室和接受室之间膜安装位置的孔口的扩散面积,;(2) 每个扩散池的接受室的容积;(3)在相关研究持续时间(例如,6小时)内测量膜表面(例如,32°C±1°C)或膜正下方的温度,的稳定性;以及(4)如适用,测定搅拌或搅拌的速率。 If information related to the diffusional area of the orifice and the volume of the receptor solution compartment for each diffusion cell is available from the manufacturer, that information should be provided for each relevant diffusion cell, in addition to the empirical measurements made by the laboratory. The equipment should control the diffusion cell thermoregulation so that the membrane surface temperature is verified to be stable (e.g., at 32°C ± 1°C) for each diffusion cell (e.g., measured by a calibrated infrared thermometer) before dosing. If it is not feasible to verify that the membrane surface temperature of a diffusion cell has equilibrated and stabilized (e.g., at 32°C ± 1°C) before dosing because of design and operating principles of a specific equipment, the qualification of that equipment should demonstrate that, under the specific conditions used for the IVRT method, the membrane surface temperature can be expected to be stable (e.g., at 32°C ± 1°C) for each diffusion cell throughout the test. 如果制造商提供了与每个扩散池的孔扩散面积和接受室容积相关的信息,则除了实验室进行的经验测量外,还应提供每个相关扩散池的信息。设备应控制扩散池温度调节,以便在给药前验证每个扩散池的膜表面温度是否稳定(例如,32°C±1°C)(例如,通过校准的红外温度计测量)。如果由于特定设备的设计和操作原理,在给药前无法验证扩散池的膜表面温度是否已达到平衡和稳定(例如,在32°C±1°C),对于该类型的设备确认应证明,在IVRT方法使用的特定条件下,在整个测试过程中,每个扩散池的膜表面温度可以预期保持稳定的(例如,在32°C±1°C)。(如下图,膜温度平衡预实验) B. Membrane Qualification  膜确认 Membrane inertness should be eva1uated in relation to membrane binding of the drug in the receptor solution at a concentration relevant to the range of drug concentrations in the receptor solution during the test. Determinations should be based upon a minimum of three replicate membrane incubations for the IVRT duration at the relevant temperature (e.g., 6 hours at 32°C ± 1°C). Three replicate control incubations should be performed in parallel, without membranes, to monitor for drug loss that is not associated with membrane binding. Aliquots of these solutions should be collected before and after the duration of incubation, to assess any decrease in the amount of drug in solution. The recovery of drug in solution is recommended to be within the range of 100% ± 5% at the end of the test duration to qualify the inertness of the membrane. 在试验期间,应在与接受液中药物浓度范围下,根据药物在接受液中与膜吸附来评估膜惰性。测定应基于在相关温度下(例如,32°C±1°C下6小时)IVRT持续时间内至少重复三次膜孵育。应在没有膜的情况下平行进行三次重复对照孵育,以监测与膜结合无关的药物损失。应在孵育前后收集这些溶液的等分试样,以评估溶液中药物量的减少。建议在试验结束时,溶液中药物的回收率在100%±5%的范围内,可以确认膜的惰性。 C. Receptor Solution Qualification  接收介质确认 The reason for selecting the composition of the receptor solution used for the IVRT study should be explained. The solubility of the drug in the IVRT receptor solution should be empirically determined in triplicate, to illustrate that the solubility of the drug in the receptor solution exceeds the highest sample concentration in the IVRT pivotal study, ideally by an order of magnitude, but demonstrably sufficient to facilitate a linear (steady state) release rate for the duration of the study (even when eva1uating the relatively higher release rate of a formulation that is 150% of the nominal strength of the RS during the IVRT method validation) 应解释选择IVRT研究所用接受液成分的原因。药物在IVRT接受液中的溶解度,应根据经验测定一式三份,以说明药物在接受液中溶解度超过IVRT正式研究中的最大药物浓度,理想情况下是一个数量级或者是足以促成研究期间释放速率的线性关系(稳态)(即使在IVRT方法验证期间评估配方的相对较高释放率时,即RS标称规格的150%) D. Receptor Solution Sampling Qualification  接收液取样确认 The accuracy and precision of receptor solution sample collection at each time point should be appropriately qualified. Evidence to qualify a sampling procedure should illustrate that the sampling technique can reliably collect a consistent volume of the sample from the well-mixed volume of the receptor compartment at each sampling event, and that no artifacts are likely to be created by the sampling technique (e.g., because of carryover between samples in automated sampling systems or because of sampling from an unmixed volume in the sampling arm of a vertical diffusion cell). Information should be included describing the equipment manufacturer’s specification for the accuracy and precision of receptor solution sampling, when available. 每个时间点的接受液取样的准确度和精密度应进行确认。确认取样程序的过程应証明,取样技术可在每次取样时从的混合良好的接受室中可靠地收集相同体积的样品,并且不会因取样技术的原因引起误差(例如,由于自动取样系统中的样本之间的干扰或残留,或由于从垂直扩散池的未混合均一取样臂中取样)。应描述设备制造商关于接受液取样准确度和精密度的规范信息(如有)。 E. Environmental Control  环境控制 Ambient laboratory temperature and humidity during the study should be monitored and reported. An environmentally controlled temperature range of 21°C ± 2°C is recommended, and, if feasible, a humidity range of 50% ± 20% relative humidity is recommended. 应监测和报告研究期间的实验室环境温度和湿度。建议环境控制温度范围为21°C±2°C,如果可行,建议湿度范围为50%±20%相对湿度。 F. Linearity and Range  线性和范围 The linearity (r2 value) of the release rate (slope) should be plotted across the range of the sampling times, which corresponds to the IVRT study duration. The linearity of drug release should be calculated and reported for each diffusion cell and compared within and across all IVRT runs. For the release rate to be considered suitably linear, it should have an r2 value ≥ 0.97 across the recommended IVRT study duration of 4–6 hours. An IVRT study duration of less than 4 hours may be insufficient to assess whether the release rates being compared for the test topical product and RS represent their steady state drug release kinetics, but an IVRT study duration of less than 4 hours (which is not recommended) may be justified if supported by compelling experimental data within the method development report to illustrate that reasonable and scientifically appropriate efforts were made to optimize the IVRT method. The IVRT method linearity and range should be established based upon the results of the precision and reproducibility runs, described further below. 在IVRT的整个研究期间,根据所有采样时间点的释放速率绘制标准曲线,应呈线性关系(r2值)。应计算并报告每个扩散池的药物释放线性方程,并与所有IVRT研究结果进行比较。为了使释放速率为线性的前提是,建议IVRT研究持续时间为4–6小时,其应具有r2值≥0.97。通常小于4小时的IVRT研究持续时间可能不足以评估自制制剂和RS的释放速率是否代表其稳态药物释放动力学,但是,如果方法开发报告中有令人信服的实验数据支持,说明已做出合理和科学上的努力来优化IVRT方法,则IVRT研究持续时间小于4小时(不推荐)也是可以接受的。IVRT方法的线性和范围应根据精密度和重复性试验的结果确定,详见如下所述。 G. Precision and Reproducibility   精密度和重现性 The intra-run and inter-run precision and reproducibility may be compared for the release rate (slopes) calculated for each diffusion cell. The mean, standard deviation, and percent coefficient of variation (%CV) among slopes may be calculated within and across all runs, and a minimum intra-run and inter-run %CV ≤ 15% is recommended. Runs may be organized to facilitate a simultaneouseva1uation of intra/inter-instrumentation and/or intra/inter-operator precision and reproducibility. A minimum of three independent precision and reproducibility runs is recommended. 可以针对每个扩散池的释放速率(斜率)计算批内和批间精密度和重现性。应计算批内和批间斜率的平均值、标准偏差和变异系数百分比(%CV),批内和批间%CV,均应≤ 15%。可以组织运行响应面实验,以便于同时评估仪器内部/内部和/或操作员内部/内部的精密度和重复性。建议至少进行三次独立的精密度和重现性试验。 H. Dose Depletion   剂量消耗 The recovery of released drug in the receptor solution should be characterized in each diffusion cell as the cumulative amount of drug released into the receptor solution over the IVRT study duration. This may be expressed as a percentage of the amount of drug in the applied dose (which may be estimated based upon the nominal strength of the drug in the topical product and the approximate mass of topical product dosed on the membrane). For example, if 1 gram (g) of a topical product containing 5% drug was dosed on the membrane of each diffusion cell, the amount of drug in the applied dose may be estimated to be 50 mg. If a total of 10 mg of drug diffused into the receptor solution of each diffusion cell across the 6-hour duration of the IVRT, it would be possible to estimate that the 50 mg dose would have been depleted by 10 mg, amounting to a 20% dose depletion. The average percentage dose depletion may thereby be estimated and should be reported. While steady state release kinetics can typically be assumed under conditions when the dose depletion is less than 30%, for some topical products, steady state release kinetics may continue to be observed at higher percentage dose depletions. The IVRT method may be considered adequate despite a dose depletion of greater than 30% when experimental evidence illustrates that the release rate (slope) remains suitably linear for each diffusion cell when plotted versus the square root of time 应计算接受液中释放药物的回收率,用以表征IVRT研究期间,释放到接受液中的累积药物量。这可以表示为上样剂量中药物量的百分比(其可以根据外用制剂中药物的标示规格和膜上大致上样量来评估)。例如,如果在每个扩散池的膜上的上样量为1克(g),制剂标示规格含有5%药物,则上样剂量中的药物量可估计为50mg。如果在IVRT的6小时持续时间内,共有10mg的药物扩散到每个扩散测试池的接受液中,则可以估计50mg剂量已经消耗10mg,相当于20%的剂量消耗。因此,可以估计并报告平均剂量消耗百分比。虽然在剂量消耗小于30%的条件下通常可以假设稳态释放动力学,但对于一些外用制剂,在较高百分比的剂量消耗下可以继续观察到稳态释放动力学。当实验证据表明每个扩散池的释放速率(斜率)与时间的平方根作图时,每个扩散池的释放速率也能保持线性关系,尽管剂量消耗大于30%,IVRT方法也被认为是考虑充分的 I.Discrimination Sensitivity, Specificity, and Selectivity   区分力—灵敏度、专属性和选择性 The IVRT method should be able to discriminate drug release rates from similar formulations. This should be eva1uated by comparing the release rate from the test formulation with that from two comparable formulations in which the concentration of drug has been altered – one with a higher strength (150% of the nominal concentration of the RS) and one with a lower strength (50% of the nominal concentration of the RS). If precipitation of the active ingredient is observed when formulating a topical product at 150% compared to the nominal strength, it may be necessary to use different strategies, which may be discussed with the Agency before the submission of an ANDA during a pre-ANDA product development meeting or via a controlled correspondence. The composition and procedures for preparation of these higher and lower strength formulations should be reported, although these formulations need not be prepared in a manner compatible with current Good Manufacturing Practices. The discrimination ability of the IVRT method should be described using three concepts of discrimination ability: sensitivity, specificity, and selectivity. IVRT方法应能够区分相似制剂的药物释放率。应通过将试验制剂的释放速率与药物浓度发生变化的两种改变规格的制剂的释放率进行比较来评估这一点——一个较高规格(RS标称浓度的150%),另一个较低规格(RS额定浓度的50%)。如果在配制与标示规格相比为150%的局部产品时观察到活性成分析出,则可能需要使用不同的策略,这可以在ANDA前产品开发会议期间或通过受控通信在提交ANDA之前与机构讨论。应报告较高和较低规格配方的组成和制备程序,尽管这些配方制剂不是在符合GMP条件下制备。IVRT方法的区分力应从以下三个概念来描述:灵敏度、特异性和选择性。 IVRT Sensitivity IVRT   灵敏度 IVRT sensitivity is the ability to detect changes in the release rate, as a function of drug concentration in the formulation. If the IVRT method consistently identifies higher or lower rates of release for test formulations with increased or decreased drug concentrations, respectively, relative to the formulation at the nominal strength of the RS run in parallel on the same day, the IVRT method would generally be considered sensitive. IVRT灵敏度是检测释放速率变化的能力,释放速率作为制剂中药物浓度的函数。如果同一天,对RS、较高规格和较低规格平行实验,IVRT方法一致地识别制剂的释放速率更高或更低,则通常认为IVRT方法是灵敏的。 IVRT Specificity IVRT  特异性 IVRT specificity is the ability to accurately monitor the proportionality of changes in the release rate as a function of drug concentration in the formulation. This proportionality may be illustrated in a plot of the relationship between the formulation concentration and the average IVRT release rate (slope). The specificity of the IVRT method should be calculated, plotted with a linear trendline, and the linearity quantified and reported as an r2 value. To be considered suitably specific, an IVRT method should be proportionally linear in its response to differences in release rates, with a minimum r2 value ≥ 0.95 for the correlation of the formulation concentration to the average IVRT release rate (slope). IVRT特异性是准确监测释放速率随制剂中药物浓度变化的比例的能力。该比例可以用制剂浓度和平均IVRT释放速率(斜率)之间的关系图来说明。应通过绘制线性趋势线,将线性量化并报告为r2值,评估IVRT方法的特异性,。IVRT方法在其对释放速率差异的响应中应该是成比例的线性的,制剂浓度与平均IVRT释放速率(斜率)最小的r2值≥ 0.95,表示改方法具有合适的特异性。 IVRT specificity is a function of the proportionality of release rates across different strengths of the product, some, or all of which may be formulated as small-scale laboratory batches, with each strength having a slightly different formulation composition to accommodate for the different amount of the active ingredient in that strength of the product. These slight formulation differences across the different strengths of the product may impact the ideal proportionality of release rates across the different strengths of the product. IVRT特异性是产品不同规格的释放速率比例的函数,其中一些或全部可作为小规模实验室批次配制,每个规格的制剂组成略有不同,以适应该产品规格中活性成分的不同量。产品不同规格的这些轻微配方差异可能会影响产品不同规格释放速率的理想比例。 Thus, the proportional linearity of release rates across different strengths of the product may be impacted by formulation differences across the strengths that are independent of the proportional responsiveness of the IVRT method. The minimum r2 value ≥ 0.95 for the correlation of the formulation concentration to the average IVRT release rate (slope) takes into account that the IVRT method’s response to differences in release rates may not appear to be perfectly proportional because of formulation differences that are independent of the IVRT method. 因此,产品不同规格的释放速率的比例线性可能受到不同规格的配方差异的影响,这些差异与IVRT方法的比例响应性无关。由于制剂差异与IVRT方法无关,考虑到IVRT方法对释放速率差异的响应可能不完全成比例,因此,制剂浓度与平均IVRT释放速率(斜率)的相关性最小r2值≥ 0.95的。 Note that the linearity of release rates across different strengths of the product (which assesses the specificity of the IVRT method, with a minimum r2 value ≥ 0.95) is fundamentally different and has different scientific considerations than the linearity of the release rate for a single strength of the product across the range of the sampling times (which assesses the IVRT method’s ability to monitor the steady state release kinetics of the active ingredient, with a minimum r2 value ≥ 0.97). Despite the potential for different scientific considerations to impact the linearity of the IVRT results in each context, for well-developed and suitably controlled IVRT methods, the r2 value ≥ 0.99 is routinely observed in both contexts. 注意,产品不同规格的释放速率的线性(评估IVRT方法的特异性,最小r2值≥ 0.95)与在取样时间范围内的产品单一浓度的释放速率的线性(这评估了IVRT方法监测活性成分稳态释放动力学的能力,具有最小r2值≥0.97)。尽管在每种情况下,不同的科学考虑因素可能会影响IVRT结果的线性,但对于良好开发和适当控制的IVRT方法,在两种情况下,r2值≥ 0.99通常都是满足的。(如下图r2=0.9915) IVRT Selectivity IVRT   选择性 IVRT selectivity is the ability of the IVRT method to discriminate the drug release rates between the reference topical product and the altered (50% and 150% nominal strength) concentration test formulations such that their release rates are determined to be statistically inequivalent compared to that from the nominal reference strength formulation. Determination of inequivalence between release rates should be eva1uated using the statistical approach described in USP General Chapter <1724>. IVRT选择性是IVRT方法区分参考外用制剂和改变的(50%和150%标示规格)浓度测试制剂之间的药物释放速率的能力,从而确定它们的释放速率与标示参考规格制剂的释放速率在统计上不相等。应使用USP通用章节<1724>中描述的统计方法评估释放速率之间的不等效性。 Specifically, the release rates from six cells dosed with the nominal reference strength formulation should be compared with the release rates from 6 cells dosed with the formulation at 150% the nominal reference strength, using the statistical approach described in USP General Chapter <1724> . All 12 cells being compared should have been run in parallel on the same day, and the release rate from the formulation at 150% the nominal reference strength should fail to show equivalence to the release rate from the nominal reference strength formulation. 具体而言,应使用USP通用<1724>章节中所述的统计方法,将六杯标示规格制剂的测试池的释放率与六杯150%标示制剂的测试池释放率进行比较,根据<1724>章节要求,这12杯应在同一天平行实验,在标示规格的150%时,制剂的释放速率不能显示出与标示规格制剂的释放率相等。 The release rates from 6 cells dosed with the nominal reference strength formulation should also be compared with the release rates from 6 cells dosed with the formulation at 50% the nominal reference strength, using the statistical approach described in USP General Chapter <1724> . All 12 cells being compared should have been run in parallel on the same day, and the release rate from the formulation at 50% the nominal reference strength should fail to show equivalence to the release rate from the nominal reference strength formulation. 还应使用USP通用章节<1724>中描述的统计方法,将6个测试池的标示规格浓度制剂(即100%规格)的释放率与6个测试池50%规格时的释放率进行比较,这12杯应在同一天平行实验,50%规格制剂配方的释放速率应与对照制剂的释放率不等效。 IVRT Supplemental Selectivity IVRT  补充选择性 IVRT supplemental selectivity is the ability of the IVRT method to discriminate the drug release rates between the reference topical product and an altered formulation with the same nominal reference strength, such that their release rates are determined to be statistically inequivalent. IVRT补充选择性是IVRT方法区分参考外用制剂和具有相同标示规格的改变制剂之间的药物释放速率的能力,从而确定它们的释放速率在统计上不等效。 The demonstration of IVRT selectivity (distinct from supplemental selectivity) validates the ability of the IVRT method to discriminate differences in release rates under conditions when the release rate is expected to differ in a predictable manner (i.e., when there are different concentrations of drug in the formulation). IVRT选择性的证明(不同于补充选择性)验证了IVRT方法在预计释放速率可以预测的方式不同的条件下(即,当制剂中存在不同浓度的药物时)区分释放速率差异的能力。 A separate and supplemental demonstration of the selectivity of an IVRT method, when feasible, independently validates the ability of the IVRT method to discriminate differences in release rates under the conditions of the pivotal IVRT study, in which the test and reference topical products are compared at the same strength. Thus, the supplemental demonstration of the selectivity of the IVRT method validates that it can detect differences in the release rate that are associated with aspects of the formulation other than the strength, and this is ideal, when feasible. 在可行的情况下,IVRT方法选择性的单独和补充证明独立验证了IVRT方法在关键IVRT研究条件下区分释放率差异的能力,其中自制和对照外用制剂以相同的规格进行比较。因此,在可行情况下,理想情况下的IVRT方法选择性的补充论证证明了它可以检测与制剂的规格以外的方面相关的释放速率的差异。 Determination of inequivalence between release rates should be eva1uated using the statistical approach described in USP General Chapter <1724>. Specifically, the release rates from 6 cells dosed with the nominal reference strength formulation should be compared with the release rates from 6 cells dosed with an altered formulation, also at the nominal reference strength, using the statistical approach described in USP General Chapter<1724> . All 12 cells being compared should have been run in parallel on the same day, and the release rate from the altered formulation at the same nominal reference strength should fail to show equivalence to the release rate from the nominal reference strength formulation. 应使用USP通用章节<1724>中所述的统计方法评估释放速率之间的不等效。具体而言,应使用USP通用章节<1724>中描述的统计方法,将对照标示配方给药的6个测试池的释放速率与相同规格下的改变配方给药6个测试池的释放率进行比较,并且在相同的标示规格下,来自改变的制剂的释放速率应当显示出与对照标示制剂的释放率等效。 The altered formulation used in the assessment of supplemental selectivity should have the same nominal strength as the reference topical product, and may include changes in inactive ingredients, changes in inactive ingredient concentration(s), changes in the manufacturing processes, or combinations thereof. However, not all variations in a formulation will necessarily produce a difference in the release rate compared to the reference formulation, and if two similar formulations are found to have equivalent release rates, the demonstration of supplemental selectivity may be inconclusive.Therefore, applicants are encouraged to develop or select an altered formulation for the demonstration of supplemental selectivity based on differences in physicochemical and structural properties of the formulation (relative to the reference formulation) that are likely to alter the release rate of the active ingredient from the formulation. The altered formulation may be a marketed topical product, such as a different dosage form at the same strength of the same drug (e.g., a 5% gel versus a 5% ointment). Product batch information for all topical product lots used in IVRT method development, and validation studies, as applicable, should be submitted in the study reports. The topical product information should include, but not be limited to, information about the batch formula, manufacturing date, batch size, altered manufacturing processes (if applicable) and, if available, potency and content uniformity. 用于评估补充选择性的改变配方应具有与对照外用制剂具有相同规格、不同配方的制剂,并且可改变的特性包括:非活性成分的变化、非活性成分浓度的变化、制造工艺的变化或其组合。然而,与对照配方制剂相比,并非所有制剂的变化都必然会产生释放速率的差异,如果发现两种类似的制剂具有相同的释放速率,则不适用于论证补充选择性。因此,鼓励申请人根据制剂(相对于对照配方)的物理化学和结构性质的差异,开发或选择一种可能会改变活性成分释放速率的制剂,以论证补充选择性。变更的制剂可以是上市的外用制剂,例如相同规格的相同药物的不同剂型(例如,5%凝胶与5%软膏)。如适用,应在研究报告中提交,IVRT方法开发和验证研究中使用的所有外用制剂相关批次信息。包括但不限于:有关批次配方、生产日期、批次大小、变更的生产工艺(如适用)以及效价和含量均匀度(如可用)的信息。 J. Robustness   耐用性 The IVRT method may be considered robust to a variation in the test method if the average slope of an IVRT run under the altered IVRT method parametersis within ± 15% of the average slope of the precision and reproducibility IVRT runs. Robustness testing may encompass variations in the IVRT method that are relevant to the equipment and test method, for example: 如果在改变的IVRT方法参数下,IVRT运行的平均斜率在精密度和重现性研究中获得IVRT运行平均斜率的±15%以内,则IVRT方法可被认为对该参数的的改变具有耐用性。耐用性测试可能包括IVRT方法中相关的设备和测试方法的改变,例如: lTemperature variations (e.g., - 1°C and +1°C relative to 32°C ± 1°C) 温度变化(例如,相对于32°C±1°C,-1°C和+1°C) lDose volume variations (e.g., +10% and -10% in the dose volume) 上样体积变化(例如,上样体积的+10%和-10%) lReceptor solution variations (e.g., slight change in composition and/or pH) 接受液变化(例如,轻微改变组成和/或pH值) lMixing rate variation (e.g., slight change in stirring speed, as applicable) 混合速率变化(例如,轻微改变搅拌速率,如适用) V. SAMPLE  ANALYTICAL  METHOD  VALIDATION  样品分析方法验证 While exploratory studies performed during IVRT method development may use an unvalidated sample analytical method, it is essential that all studies conducted as part of the IVRT method validation use a validated sample analytical method. A validated IVRT method should use a validated receptor solution sample analytical method. Therefore, a discussion of the sample analytical method for the IVRT method is included in this guidance under this section. 尽管IVRT方法开发期间进行的探索性研究,可以使用未经验证的样品分析方法,但作为IVRT方法验证的一部分,在进行IVRT的所有研究都必须使用经验证的样品分析方法。已验证的IVRT方法应使用已验证的接受液样品分析方法。因此,本部分讨论的IVRT方法样品分析方法。 It is important to note that the study protocols and reports related to the IVRT method are distinct from those for the sample analytical method that is used to quantify drug concentrations in IVRT receptor solution samples. The validation of a sample analytical method, in and of itself, does not demonstrate the validity of an IVRT method. Separate and specific reports should be submitted for the validation of the sample analysis (e.g., HPLC or UPLC) method and for the validation of the IVRT method. 值得注意的是,与IVRT方法相关的研究方案和报告与用于定量IVRT接受液样品中药物浓度的样品分析方法不同。样品分析方法的验证本身并不能证明IVRT方法的有效性。因此,应提交单独和具体的报告,已验证样品分析(如HPLC或UPLC)方法和IVRT方法的验证报告。 Any results from studies of the IVRT method that are performed (during method development) using a different sample analytical method than that which is ultimately validated, cannot support a demonstration of the validity of the IVRT method. Information should be provided in the IVRT method validation report referencing the (separate) sample analytical method validation, and clearly indicate that all relevant results in the IVRT method validation report were obtained using a validated sample analytical method (as opposed to an analytical method with different parameters than those which were validated). 在方法开发期间使用的样品分析方法与最终验证的样品分析方法不同,与其相关的IVRT方法研究结果无法支持IVRT方法的有效性。IVRT方法验证报告中应提供参考(单独)样品分析方法验证的信息,并明确指出IVRT方法确认报告中的所有相关结果均是使用经验证的样品分析方法获得的(而不是使用与经验证的分析方法具有不同参数的样品分析方法)。 The receptor sample analysis procedures, typically involving HPLC or UPLC, should be performed using chromatography software (e.g., a chromatography data system) with audit trails, and should include a multi-point (6–8 concentration) calibration curve with suitable quality control samples, and should be validated in a manner compatible with the FDA guidance for industry Bioanalytical Method Validation (May 2018). 接受液中样品分析方法,通常涉及HPLC或UPLC,应使用带有审计跟踪的色谱软件(例如色谱数据系统)进行,,并应包括多点(6-8浓度)校准曲线,以及适当的质量控制样品,并且应以符合FDA工业生物分析方法验证指南(2018年5月)的方式进行验证。 The validation of the receptor sample analytical method should include relevant qualifications of dilution integrity, if applicable, as well as stability assessments with the highest relevant temperature in the receptor solution for the longest relevant duration; the highest relevant temperature may be warmer than the IVRT membrane surface temperature because the temperature of the receptor solution is often higher than the temperature at the surface of the membrane (e.g., the temperature of the receptor solution may be 34°C when the temperature of membrane surface is 32°C, so stability assessments with the IVRT receptor solution may be performed at 34°C for 6 hours; the temperature would be higher for an IVRT with a vaginal gel, for example). 如适用,接受液中样品分析方法的验证应包括稀释完整性的相关确认,以及在最长相关时间内接受液中最高相关温度的稳定性评估;最高相关温度可以略高于IVRT膜表面温度,因为接受液的温度通常高于膜表面的温度(例如,当膜表面的温度为32°C时,接受液的温度可能为34°C,因此IVRT接受液的稳定性评估可在34°C下进行6小时;而在阴道凝胶制剂的IVRT研究中的温度会更高)。 VI. IVRT PIVOTAL STUDY IVRT  正式研究 The IVRT pivotal study comparing the drug release rates between the test and reference topical products should be performed in a manner compatible with the general procedures and statistical analysis method specified in USP General Chapter<1724> . The cumulative amount of drug released at each sampling time point should be reported for each diffusion cell. Relevant summary statistics for the IVRT study should also be reported. IVRT正式研究中应对自制制剂和对照外用制剂之间的药物释放率进行比较,应符合USP一般章节<1724>中规定的一般程序和统计分析方法进行。应报告每个扩散池在每个取样时间点释放的药物累积量。还应报告IVRT研究的相关汇总统计数据。 A. Handling and Retention of Samples   样品的处理和保存 Refer to 21 CFR 320.38, 320.63 and the guidances for industry Handling and Retention of BA and BE Testing Samples (May 2004) and Compliance Policy for the Quantity of Bioavailability and Bioequivalence Samples Retained Under 21 CFR 320.38(c) (August 2020), as applicable, regarding considerations for retention of study drug samples and to 21 CFR 320.36 for requirements for maintenance of records of BE testing. Retention samples should be randomly selected from the drug supplies received before dispensing during the IVRT study in which the test topical product and RS are compared. Experimental observations that may have the potential to influence the interpretation of the study results, as well as any protocol deviations, should be reported B.参考21 CFR 320.38、320.63以及FDA行业指南《生物利用度(BA)和生物等效性(BE)研究中测试样品的处理和保存》(2004年5月)和《21 CFR 320.38(c) BE样品留存的数量及生物利用度》(2020年8月),如适用,关于保留研究药物样品的考虑以及21 CFR 320.36关于保存BE检测记录的要求。在IVRT中比较自研外用制剂和RS前应从收到的药品中随机选择样品进行留样。应报告可能影响研究结果解释的实验观察结果以及任何方案偏差。Control of Study Procedures 研究程序的控制 Procedures   研究程序的控制 Study procedures that have the potential to influence the results of the study should be appropriately controlled. Also, experimental observations that may have the potential to influence the interpretation of the study results, as well as any protocol or standard operating procedure (SOP) deviations, should be reported. 应适当控制可能影响研究结果的研究程序。此外,应报告可能影响研究结果解释的实验观察结果,以及任何方案或标准操作程序(SOP)偏差。 In addition, investigators should perform the IVRT validation and pivotal studies within a quality management system that includes, but is not limited to, d0cumented procedures for: 此外,研究人员应在质量管理体系内进行IVRT验证和正式研究,该体系包括但不限于: lStudy personnel identification, training, qualification, and responsibilities研究人员识别、培训、资质和职责 lStudy management and study management personnel responsibilities研究管理和研究管理人员职责 lQuality control (QC) and QC personnel responsibilities质量控制(QC)和QC人员职责 lQuality assurance (QA) and QA personnel responsibilities质量保证(QA)和QA人员职责 lUse of SOPs SOP的使用 lUse of study protocols研究方案的使用 lUse of study reports研究报告的使用 lMaintenance and control of the study facility environment and systems研究设施环境和系统的维护和控制 lQualification and calibration of instruments and computerized systems仪器和计算机系统的验证和校准 lGood d0cumentation practices including, but not limited to, contemporaneous d0cumentation of study procedures and recording of experimental observations or deviations from procedures specified in the study protocol or in relevant SOPs良好的文件记录规范,包括但不限于:研究程序的同期记录和实验观察结果的记录,或与研究方案或相关SOP中规定的程序的偏差 lMaintenance of suitable records that facilitate the reconstruction of study events and procedures, including study sample handling and storage records (e.g., sample tracking logs), audit trails for sample analysis procedures, control of study materials and reagents, and electronic data control对记录进行适当维护,有助于重现研究过程,包括:研究样品处理和保存记录(例如,样品跟踪日志)、样品分析过程的审计跟踪、研究物料和试剂的控制以及电子数据控制 lArchival of study records研究记录归档 C.Blinding Procedure   盲法程序 A detailed descr1ption of the blinding procedure should be provided in the study protocol and final report for the IVRT pivotal study. The packaging of the test topical product and RS should be similar in appearance to maintain adequate blinding of the investigator and any experimental operators. Once blinded, the test topical product and RS should be identified by a random designation, e.g., “A” or “B.” IVRT正式研究的研究方案和最终报告中应详细说明盲法程序。自制外用制剂和RS的包装外观应相似,以保持研究者和任何实验操作人员的充分随机。一旦采用盲法程序,应通过随机名称(例如“A”或“B”)来区别自制外用制剂和RS D.Dosing   上样 In the IVRT pivotal study, the test topical product and RS should be dosed in an alternating pattern on successive diffusion cells. There are two possible sequences for the alternating pattern (either ABABAB or BABABA). One of these two dosing sequences should be randomly selected. 在IVRT正式研究中,自制外用制剂和RS应在连续扩散池上交替给药。交替模式有两种可能的序列(ABABAB或BABABA)。可以随机选择这两种给药顺序中的一种。 VII. SUBMITTING INFORMATION ON IVRT STUDIES IN AN ANDA  ANDA中递交的IVRT研究信息 For IVRT studies with topical products submitted in ANDAs that are intended to support a demonstration of BE, detailed study protocols, relevant SOPs, and detailed reports should be submitted for the IVRT method validation and the IVRT pivotal study. In addition, a detailed report describing the IVRT method development should be submitted. These protocols, SOPs, and reports should be submitted in module 5.3.1.2 of the electronic Common Technical d0cument (eCTD) and should describe experimental procedures, study controls, quality management procedures, and data analyses. 对于在ANDA中提交的外用制剂用于支持BE论证的IVRT研究,应为IVRT方法验证和IVRT正式研究提交详细的研究方案、相关SOPs和详细报告。此外,还应提交一份详细报告,关于IVRT方法的开发。这些方案、SOPs和报告应在电子通用技术文件(eCTD)的模块5.3.1.2中提交,并应描述实验程序、研究控制、质量管理程序和数据分析。 Note that the study protocols, SOPs, and reports related to the IVRT method are distinct from those for the sample analytical method that is used to quantify drug concentrations in IVRT receptor solution samples (e.g., a HPLC or UPLC method). Separate protocols and SOPs should be submitted for the sample analytical method validation. Sample analytical method development and validation reports, pivotal IVRT study sample analysis reports, as well as associated SOPs and protocols relevant to the sample analysis for an IVRT study should be submitted in Module 5.3.1.4 of the eCTD. 注意:与IVRT方法相关的研究方案、SOPs和报告与用于定量IVRT接受液中样品药物浓度的样品分析方法(例如HPLC或UPLC方法)不同。样品分析方法验证应提交单独的方案和SOPs。样品分析方法开发和验证报告、正式IVRT研究样品分析报告以及与IVRT研究的样品分析相关的相关SOPs和协议,应在eCTD的模块5.3.1.4中提交。

查看更多
2022-12-30

如何进行溶出方法的偏差调查

溶出度是几乎所有固体口服剂型的关键产品性能测试和质量规范。溶出方法开发最初侧重于确定和可区分潜在产品关键材料属性(CMA)和关键工艺参数(CPP)差异的条件,理想地将体外溶出与体内药物产品性能联系起来。然而,随着一种溶出方法从开发阶段进入更常规的使用阶段,因为使用过程中的变异性来源增加,可能出现更多异常结果(OOS)而导致需要对溶出方法进行调查的情况。通常导致溶出方法需要被调查的场景包括: 不合规格结果(OOS) 趋势外结果(OOT)结果可变性增加进展到第2或3阶段测试溶媒准备过程中的观察到问题溶出过程中观察到异常实验室或溶出设备之间方法转移过程中的不可比性引入自动化溶出装置 本综述参考James Mann等的《Dissolution Method Troubleshooting: An Industry Perspective》内容,对溶出方法调查和异常处理的经验教训和最佳实践进行了总结。此外,还提供了真实的行业案例研究,以举例说明导致溶出测试方法异常的各种异常成因,并为各位研究溶出的同仁带来偏差调查与溶出度实验管理的启迪。 溶出的偏差调查 溶出实验可被视为三种不同的活动的总和:获取分析用样品的程序、样品的分析和化学分析溶出结果的计算。我们建议实验室的调查工作常常使用鱼骨图(图1)来展开。它是一个因果系统的可视化表示,可以帮助分析问题的根本原因,并广泛用于制药行业的各种应用。它允许对所有可能被忽视的潜在原因进行头脑风暴。用于溶出调查的鱼骨分为六个重点领域:设备、方法、物料、计算、人员和环境。这些领域中的每一个都是在溶出方法偏差调查的背景下进行小组讨论的。 1. 物料 在任何溶出方法调查中要考虑的物料主要分为三类:用于制备溶出介质的成分、标准品和测试的药物产品。 1.1 溶出介质的制备 对于溶出介质,简单检查试剂重量以及是否使用了正确等级的试剂是一个很好的起点。观察到的常见错误包括未正确理解磷酸盐等水合盐。例如,使用二水合物而不是一水合物或无水盐,这会对缓冲液浓度产生后续影响。无水盐如果储存不当,可能会与水结合,这可能会导致称量制备合适缓冲液浓度所需的正确盐质量的问题。 此外,一元盐和二元盐可以以与通常不同的方式混合并调节至正确的pH,这与使用正确的盐相比,会产生不同的介质总组成。通过确保记录物料添加的明确顺序和调整前的预期pH值,以及与预期pH值的任何差异,分析师可以暂停并检查pH值超出预期值的原因,从而避免这种情况。 对于大部分溶出介质的制备,必须确保其充分混合,这在从浓缩物中稀释以确保在等分之前形成均匀的溶液时尤为重要。例如,案例研究2表明,对于缓冲系统中50L或更大的介质体积,需要1min/L或更长的混合时间。此外,如果使用pH值作为大型容器混合的确认,则应从不同深度的多个点取样。 标准做法还应确保所有试剂均已正确储存,且在指定的保质期内。还应考虑缓冲液的污染,无论是来自使用未充分冲洗的相同设备的先前溶出介质,还是来自微生物污染。后者的一个例子是储存在水溶液中的氦喷射玻璃料内的微生物生长,通过确保氦气喷射玻璃料在使用之间储存在甲醇 : 水(50:50)中,解决了这个问题。 第一个案例研究说明了在使用溶出介质浓缩液时,不正确的介质制备和人为错误的综合影响。第二个案例研究说明了大量溶出介质不完全混合的影响,以及验证溶出介质制备质量的pH测量的局限性。 案例1:从浓缩液中制备溶出介质 在500mL pH 5.5的乙酸盐缓冲液中,使用桨法以75rpm进行片剂制剂的溶出试验。为方便起见,制备了10倍的缓冲液浓缩液,并在每次分析之前使用溶媒制备系统用水简单稀释至最终缓冲液浓度。图2显示了遵循该程序的开发批次的溶出曲线,显示了快速且稳定的释放。在第一次临床批量发布期间,应用上述方法时观察到虚线曲线,导致OOS结果。 在调查过程中,确定pH 5.5的最终1x乙酸盐缓冲液再次稀释1:10,假设其仍然是10倍浓缩液。因此,以低10倍的浓度制备溶出缓冲液。用正确制备的缓冲液重复溶出分析。如图2所示,临床批次的溶出符合第2阶段的溶出接受标准(30分钟时Q=80%)。开发批次和第一批临床批次之间的差异归因于颗粒粒度分布的差异,这在随后的研究中进行了分析。 一般来说,缓冲浓缩液的使用增加了可变性的来源;然而,这一过程的时间和资源效益被认为是对这一潜在错误的补偿。此外,精心设计的控制措施,如审计跟踪和文件检查,即使在早期开发阶段,也能确保过程和产品质量。 案例研究2:固体试剂制备缓冲液 胶囊制剂的溶出试验使用桨法以75rpm在900mL pH 5.5的柠檬酸盐磷酸盐缓冲液中进行。为方便起见,通过将固体盐溶出在制备容器中的水中并搅拌直至预期完全溶出来制备大量缓冲液。进行pH测量以验证缓冲液制备是否正确。使用这种溶出方法通常可以观察到快速和稳健的分布。然而,在初始稳定性期间,一个时间点的测试显示出异常高的变异性,多个OOS结果。这是在多个胶囊强度、批次和储存条件下观察到的。对溶出数据的系统研究揭示了特定批次制备的溶出介质中溶出行为随时间变化的趋势。图3显示了不同测试批次在45分钟时的药物释放百分比(六次重复的平均值),作为测试顺序的函数绘制。每个垂直网格线代表一个测试日,并指示单独的介质准备。 进一步的研究揭示了150L的溶出介质制备,搅拌78分钟。虽然搅拌时间和溶出介质体积本身都不是非典型的,但较短的混合时间和较大混合溶媒体积的组合导致了一种假设,即混合不充分,且溶媒成分在其使用中不一致。为了验证这一假设,收集了这批溶出介质中收集的溶出样品,并测试了pH、电导率、渗透压和钠、柠檬酸盐和磷酸盐的离子浓度。 图4显示了45分钟时的溶出情况以及作为测试顺序函数的介质pH值和电导率。绿色带表示正确制备的介质的pH值和电导率的预期范围。溶出性能与所用等分溶媒的pH值直接相关。尽管所用介质前半部分的pH值符合规范(导致如预期的溶出),但除使用中点附近的一小部分介质外,所有介质的电导率都在正确范围之外。测量的渗透压摩尔浓度和离子浓度与电导率的趋势相似,尽管有一些偏差。实际上,没有一份溶出介质的成分正确。对该装置的大批溶媒制备的溶媒体积和混合时间的分析导致需要1min/L或更长的混合时间,以确保50L或更大体积的溶媒充分混合。 本案例研究表明,pH值测量不是正确的溶媒制备或混合程度的充分指标。如果未使用其他度量(例如电导率),则如果要使用pH值确认混合,则应从大型容器不同深度的多个点取样。这也说明了保存样本解决方案的好处,直到所有数据都得到分析、趋势化,所有所需的调查都完成。 1.2 表面活性剂 如果化合物表现出较差的溶出度,则表面活性剂通常是用于实现漏槽条件的溶出介质的成分。十二烷基硫酸钠(SLS)是一种常用的表面活性剂,尽管它可能是溶出缺陷的来源,如在钾离子存在下沉淀。不同等级的SLS质量可能会在溶出试验的分析完成过程中因杂质引起干扰,并可能影响介质的增溶能力。接下来的两个案例研究证明了表面活性剂对溶出的潜在非预期影响,例如表面活性剂由于活性物质的存在而导致样品降解(案例研究3)以及表面活性剂与药物物质结合,阻碍溶出(案例研究4)。 案例研究3:表面活性剂引起的降解 药物在溶出介质中的化学稳定性是方法开发过程中需要考虑的重要因素。如果药物在溶出介质中降解,溶出试验期间检测到的药物量可能比实际溶出的药物量低得多。由于在特定pH条件下的化学不稳定性,经常观察到药物降解,在开发方法时,应在溶出介质选择过程中考虑到这一点。在某些情况下,溶出介质中的杂质(可由表面活性剂引入)可加速活性药物的降解。 在本案例研究中,配制成速释薄膜包衣片剂的化合物X表现出氧化降解,在某些情况下,在溶出试验的后期时间点导致溶出量明显减少(图5)。 即使在不太极端的情况下,降解不会导致溶出时间点的明显趋势,溶出样品溶液的评估也发现溶液稳定性非常有限,不到24小时。对降解途径的进一步研究发现,在样品溶液中生成了两种已知的氧化降解产物,通过高效液相色谱(HPLC)进行了定量,这两种产物都是在活性药物成分(API)的过氧化物胁迫下形成的。 这导致了一种假设,即这种降解是由于Fenton型与聚山梨醇酯80(其作为溶出介质中的表面活性剂)中存在的过氧化物的反应,由源自片剂薄膜涂层的铁催化。Fenton反应包括通过Fe(II)/Fe(III)催化将有机过氧化物转化为过氧基和烷氧基。减少溶出过程中降解的缓解策略集中于过氧化物和铁成分(例如使用下图的镀膜桨叶)。 已知聚山梨醇酯表面活性剂在暴露于空气中时会发生氧化降解,过氧化物在表面活性剂中积聚。从不同供应商获得的多批聚山梨醇酯80中定量过氧化物的量,并打开不同的时间长度。基于这些结果,聚山梨醇酯80的使用期限被限制在从打开起的30天内,并且确定了优选的供应商。此外,向溶出介质中加入乙二胺四乙酸(EDTA),通过螯合催化铁(II)和铁(III)离子来提高样品稳定性,从而防止产生过氧和烷氧基。也有报道称,螯合剂可能不会抑制Fenton反应,而是淬灭生成的自由基。事实上,发现这种方法可以显著减少溶出样品中化合物X的氧化降解,使样品的稳定性达到3天,在此期间仅损失0.2%的效力。值得注意的是,与不含EDTA的样品相比,含有EDTA的样品表现出特征氧化降解产物的最小增长。因此,对溶出方法进行了修订,将EDTA加入溶出介质中。 还探讨了向溶出介质中加入丁基化羟基甲苯(BHT)以淬灭过氧基和烷氧基。观察到氧化降解产物的生长较低,但在样品溶液中形成了化合物X-BHT加合物。因此,在这种情况下,BHT不是改善溶液稳定性的可行添加剂。 案例研究4:溶出介质的表面活性剂污染 胶囊制剂的溶出试验使用桨法以75rpm在900mL pH 5.5的柠檬酸盐磷酸盐缓冲液中进行。在将溶出方法转让给第三方期间,观察到与方法开发期间观察到的溶出性能相比,溶出性能下降。已知在足够大的SLS浓度下,药物物质与SLS形成不溶性络合物。图6显示了设计方法(无SLS)和SLS浓度范围内的溶出情况。在10 ppm SLS下,无法完全释放。 在调查过程中,发现溶出介质制剂试剂瓶之前接触过SLS。此外,使用高分辨率液相色谱-质谱(LC-MS)分析导致意外低溶出性能的溶出介质,结果显示其含有0.3ppm SLS。SLS的这一水平与方法转移过程中观察到的溶出性能下降一致。因此,新的药筒专门用于该药物产品,确保只有该项目的溶出介质接触表面。这一实践以及设备和介质相互作用的完整历史,对于准确测试对某些杂质的痕量浓度敏感的化合物非常重要。 1.3 酶 溶出测试中使用的另一种需要仔细考虑的物料是:当观察在溶出实验中到明胶胶囊交联时使用的酶。例如,USP通用章节“溶出”规定,在二级测试期间,可以向溶出介质中添加“导致活性不超过750000单位/L的胃蛋白酶”。这意味着要正确计算添加到溶出介质中的酶的质量,需要考虑USP级酶的分析证书(CoA)上的值。通常对于胃蛋白酶,需要使用蛋白质的百分比和蛋白质的单位/mg来正确计算所需的量。阅读CoA时应谨慎,因为一些供应商报告蛋白质和胃蛋白酶单位/mg蛋白质的百分比,而其他供应商则直接报告胃蛋白酶单位/mmg产品。或者,可以根据USP程序通过实验测定活性。还应注意,美国药典关于最大胃蛋白酶活性的规范是以浓度给出的。因此,在改进的Tier 2方法中,在添加表面活性剂之前,将酶添加到较低体积的缓冲液中,应适当计算较小体积的酶添加量。 1.4 标准品 应确认标准品的同一性和相关纯度,当标准品是不同于待溶出分析药物的盐或共晶形式时,应特别注意效价转换。紫外分析常用作溶出检测方法。因此,由于在最终值中考虑了有机杂质,标准品的UV纯度值通常与色谱分析中使用的值不同。 1.5 样品 最后,溶出样品本身存在可变性和误差,因此应进行检查,以确保其正确性、适当的标签、适当的实验室储存和正确的包装。通常,溶出方法调查得出的结论是,方法或分析没有发现问题,这会引发对产品制造的进一步调查。这种程度的调查超出了本文的范围。然而,在充分了解特定样品的预期性能的情况下,在方法研究中使用控制或参考样品通常是有用的,因为这有助于确定问题是否与方法或测试的单个批次有关。 2.设备 方法问题的唯一最大原因是溶出设备。这可能是由于在基本上相同的设备上运行的方法,但分析人员没有意识到制造商、水浴模型、自动化方法和/或软件之间存在的一些根本差异。 在设备调查期间进行简单的初始检查,就像检查是否与之前的实验和设备维护目视检查有任何不同一样简单。检查仪器日志、运行报告和实验中的任何错误日志,通常可以在运行之前或运行期间识别系统中的任何异常。应验证浴槽的合格状态,确保所有运行前检查,例如温度和桨叶高度。观察到的一个例子是,分析人员未能进行正确的运行前检查,并且未能观察到一溶出杯中的桨滑到25mm以下,并撞击在溶出杯底部的药片。 已经观察到金属表面在酸性介质中的降解,导致药物物质的金属催化降解。这也可能是取样套管和自动取样器针的问题。因此,确保设备维护良好且无任何表面锈蚀是确保结果一致的关键步骤。聚四氟乙烯(PTFE)涂层桨可用于解决这一问题;然而,需要注意涂层不会被划伤,因为划痕可能会导致降解区域或在实验过程中出现过饱和的成核位置。 如果使用篮法(USP装置1),则必须检查是否使用了正确的网目尺寸,以及篮的状况是否可以接受,因为这些篮筐通常容易因处理不当而变形。为了防止这种情况,可以使用工具插入和移除篮子,而不会使网格变形。 2.1 脱气设备 如果脱气对方法性能至关重要,则应检查脱气设备,以确保其提供足够质量的介质。这可以通过使用溶解氧计对介质进行外部检查来实现,以确保37°C时的浓度低于6 mg/L。脱气失败的例子是由于易腐蚀片剂表面存在气泡而导致溶出较慢,导致片剂与介质接触减少,以及由于筛网被气泡堵塞而导致通过篮式筛网的介质流量减少。当气泡增加了颗粒的浮力并导致锥形减少,导致整个容器中的固体更加分散时,也观察到由于脱气不足而导致的更快溶出。 2.2 紫外分光光度计 如果紫外分光光度计通过仪器自检,则不太可能出现问题;然而,应确认UV波长的设置方法是正确的。如果使用含有比色皿转换装置的在线UV发现单个溶出杯OOT问题,则应检查该溶出杯线上是否连接了正确的路径长度的导管。同样值得检查的是,所有配件是否牢固,因为松动的配件可能会导致空气进入导管或无法将正确的样本量拉过来比色皿中,这可能会导致异常读数,从而影响溶出曲线。 2.3 自动溶出系统 溶出方法的自动化和自动化系统之间的转移通常是问题的根源。这可能是因为分析师不了解系统如何收集样本。自动进样器参数(如初始体积、净化体积、泵流量和系统管道体积)的错误选择或定义可能会导致问题。这些设置不仅存在于单独的方法设置中,还作为系统配置文件的一部分,并且根据您是收集到小瓶中还是进行在线UV,体积有所不同;例如,如果使用注射器过滤器,体积将发生变化。不正确的设置可能会导致自动采样器无法在下一个时间点之前完成所有活动,导致无法在所需时间采集样本,或者充注和吹扫不足可能会导致采样管线中的前一个时间,从而稀释下一个时间点,产生低于预期的结果。第五个案例研究中展示了自动取样器设置的影响 案例5:自动取样设置 在桨法上对25°C/60%相对湿度(RH)和30°C/75%相对湿度下储存的12个月稳定性样品进行了速释片剂制剂的溶出试验。30°C/75%相对湿度的样品在溶出度仪A上使用它的自动采样器B运行,而25°C/60%相对湿度条件的样品在也使用它的另一款自动取样器C上运行。30°C/75%RH样品的溶出曲线比25°C/60%RH样品慢。药物溶出百分比的差异在5分钟时接近40%,在60分钟时大约10%。之前在早期的稳定时间点没有发现这种差异。12个月的30°C/75%相对湿度曲线与早期稳定时间点的曲线相比,也是OOT。 在初步实验室调查中,发现两台自动取样器B与C虽然型号相同,但方法设置不同。用于运行30°C/75%相对湿度样品的自动取样器的泵流量为10 mL/min,采集偏移量(offset volume)为2.0 mL,而用于运行25°C/60%相对湿度样品,自动取样器的流量为15 mL/min,偏移量(offset volume)为3.5 mL。偏移量(offset volume)定义为样品采集前丢弃的介质体积。据推测,溶出曲线的差异是由自动进样器设置的差异造成的。 再次运行12个月的30°C/75%RH片剂,自动进样器方法设置更改为15 mL/min流速和3.5 mL偏移量。图7显示了来自两种不同自动进样器方法设置的30°C/75%RH片剂的两种溶出曲线的比较。在15mL/min流速和3.5mL偏移体积下获得的新曲线比之前在10mL/min流速和2.0mL偏移体积下得到的曲线更快。在改变自动采样器方法设置的情况下,12个月30°C/75%相对湿度样本的分布与25°C/60%相对湿度样本以及之前稳定时间点的历史趋势相匹配(使用相同的自动采样器设置) 为了调查哪个参数更为关键,即流速或偏移量,再次使用自动取样器将30°C/75%RH样品设置为10 mL/min流速和3.5 mL偏移量。与之前使用15 mL/min流量和3.5 mL偏移量获得的曲线相比,没有观察到溶出曲线的显著差异,表明低偏移量(2.0 mL)是初始运行时溶出曲线似乎较慢的根本原因。较低的偏移量不足以清除之前取样时间点残留在管道中的样品。 最后,为了进一步证实这一发现,制备了预溶出的药物溶液,并使用不同的自动进样器设置(2.0 vs.3.5 mL偏移体积,15 mL/min流速)进行了两次试验。每个容器的取样针在水中放置5分钟时间点,然后在15分钟的下一个时间点放置到含有预溶出溶液的容器中。使用3.5 mL的偏移体积,结果显示在15分钟时几乎100%溶出,与预溶出浓度一致。在2.0-mL的偏移量下,结果小于65%的溶出回收率,表明管道中残留的水具有显著的稀释效果。这一观察结果证实,3.5mL的偏移量足以冲洗掉之前的样品,而2.0mL则不足以。本案例研究证明了理解自动取样器功能的重要性,并使用足够的偏移量来替换管道中的先前样品,确保样品代表实际采样点。 同时调查观察到的自动化引起的其他问题包括:0% 溶出在一个溶出杯中,然后在下一次运行中,由于片剂卡在样品盒中,导致200%溶出。该问题可能由片剂几何形状引起(或加剧),可能需要确保片剂的最小尺寸与溶出系统的片剂分配机构中的孔径一致对齐。 半球底部装有阀门的全自动系统的另一个常见问题是,容易出现锥体的配方会加剧锥体,这是因为与传统设计相比,容器底部整体“更平坦”。下一个案例研究侧重于自动化设备之间的方法转换,以及设备设计的差异如何导致水动力差异。这些流体动力学差异可能导致对流体动力学敏感的产品的释放曲线产生较大影响。 案例6:自动化系统之间的差异 当对同一批固体口服药物产品使用相同方法时,不同仪器(半自动溶出度仪E和全自动溶出度仪F)之间的溶出曲线存在差异。该方法为桨法,75rpm,pH3.5缓冲液。在一台仪器的溶出曲线中观察到锥体效应,但在另一台仪器中观察不到锥体效应。 检查两台仪器后,发现全自动系统F的采样探头直径大于半自动系统E的。取样探头尺寸的差异可能会导致容器内流体动力学的差异,并导致两个系统之间的样品沉积或锥体差异。 构建了三个模拟全自动系统F采样探针尺寸的采样探针,以替换半自动系统E上六个采样探针中的三个(图8A)。 使用两种类型的探针进行了溶出运行,以比较该系统的溶出曲线和锥体行为。在该溶出运行完成时,切换两种取样探头的位置,并进行第二次溶出运行,以消除因容器位置引起的任何潜在偏差。图8B显示了这些平均溶出曲线(标记为批次B)以及先前获得的半自动系统E(标记为A批次)的溶出曲线,以及各自的采样探针。 在半自动系统E中使用改进的采样探针改变了溶出曲线。在60分钟时观察到的锥体效应较小,并且溶出曲线看起来与使用全自动系统F获得的溶出曲线更相似 确定是锥体效应导致溶出结果异常后,实验室更新了溶出方法,以使用尖峰溶出杯来最小化锥体效应,消除对取样管尺寸的敏感性,并在仪器E与F之间实现可再现的溶出曲线。 与此示例类似,以下案例研究也关注自动化以及容器设计和设置中的微小差异如何影响溶出。 案例7:手动取样与自动取样的差异 由于药典法规规定溶出度仪的标准化,使溶出方法很容易转移到其他地点,因此在开发过程中,通常使用手动取样(手动取样针)作为参考方法。如果获得与手动方法类似的结果,则可以引入溶出自动取样以提高测试效率降低劳动强度。 在本例中,在早期开发期间使用了全自动系统G。配方过程的改变导致片剂的崩解行为发生改变,需要重新评估手动和自动系统之间的可比性。为了进行溶出曲线比较,使用了三种不同的仪器:溶出度仪H为手动采样,用离线紫外分光光度计测量样品;溶出度仪I与在线紫外分光度计耦合用于半自动在线测量;全自动系统G与在线紫紫外分分光光度仪耦合用于全自动测量。溶出方法是桨法,溶媒是900mL pH 4.5缓冲液,缓冲液含有0.2%SLS。 与两个自动系统相比,手动溶出H抽取的样品产生了最慢且不相似的释放曲线(图9A),全自动系统G测量了最快的溶出速率。为了研究在线紫外测量过程中半自动和全自动系统中的影响,如管道和泵的体积,在两个系统中的溶出运行过程中抽取了手动样本。与自动取样和测量相比,手动取样和平行离线测量产生了类似的溶出曲线(图9B和9C)。因此,不同溶出曲线的原因必须是溶出度仪溶出杯本身的某种原因。与在手动取样过程中使用可伸缩套管的溶出度仪H不同,两个自动系统I与G中的样品都是通过中空轴取样口抽取的。该取样口是一个小网眼插入物(图9D),导致桨轴内的表面部分不光滑。此外,全自动系统G(图9D)中的底部阀是在正常光滑的玻璃溶出容器底部插入件。因此,空心轴和底部阀都会影响溶出杯内的流体动力学,并在流体流场中产生局部差异。在本案例研究中,片剂对溶出杯内流体动力学的变化非常敏感,导致崩解和溶出增加。这使得无法使用全自动系统G建立全自动溶出方法。 3. 溶出方法 在任何调查期间,应根据批准的方法检查方法参数。这些包括桨速、容器温度、介质、参考标准制备、取样和时间点。存在这样的例子,即在50 rpm而不是75 rpm下运行的方法存在问题;由于取样时间点接近,且在取样期间管线中有介质冷却,因此介质温度下降到37±0.5°C范围之外,该系统在时间点之间保持管道中的体积;在制备过程中未完全溶出参考标准,导致低于计算的标准浓度;以及使用未经该方法验证的原位采样探针进行采样。由于(手动溶出试验)分析员几乎同时向所有容器中添加药物,因此也观察到不符合药典取样时间限制的方法存在问题。这种情况导致后来的容器在2%的窗口外取样,因为分析员不能足够快地取样和过滤。此外,在将药片放入容器之前未能停止桨叶,导致药片在沉入容器时被移动的桨叶击打,从而导致更快的溶出。如果没有正确调整取样歧管,当在500至900或1000 mL体积之间移动时,也可能会在药典区域(桨顶部和溶媒液位之间的中间位置)外进行取样。 3.1 过滤器 由于缺少或仅完成部分过滤器验证,溶出过滤器可能是溶出问题的罪魁祸首。过滤器验证应确保正确确定废弃体积,并在溶出曲线中预期的最低浓度下进行(例如,在最低浓度下的第一个时间点)。当在商业产品上更换过滤器并且仅在中等强度的标称100%溶出浓度下进行丢弃体积选择时,已经观察到一个例子。在测试较低的强度时,所选择的废弃体积不足以使过滤器适当饱和,并导致人为降低溶出结果,最终导致OOS结果。 必须完成的过滤器验证的第二个要素是检查过滤器效率。这可以通过在存在未溶出材料的时间点取样并使用废弃体积进行过滤来实现。然后应分离滤液,其中一部分立即分析,第二部分在分析前进行超声处理或进行另一种溶出方法一段时间。如果过滤器在阻止未溶出药物方面效率低下,则第二个样品将给出比原始样品更高的浓度。对于LC方法来说,消除这一问题尤为重要,因为样品可能在自动进样器上停留数小时,并且在流动相中使用有机溶剂,这两者都可能导致药物颗粒溶出。然后,这些颗粒将溶出在比容器中更小的样品体积中,对样品浓度产生不成比例的影响。由于(药物或赋形剂的)未溶出颗粒导致光散射效应,导致基线升高,需要应用校正技术来补偿,因此过滤效率低下也会导致UV方法中的问题。理想情况下,过滤器应能有效阻止所有颗粒进入样品,通常,0.45µm的膜足以过滤掉大多数药物和赋形剂,尽管许多自动化系统现在可以处理0.22µm膜过滤器的背压。 过滤器验证的最后一项检查是通过过滤溶出介质的空白溶液并分析滤液中的干扰物质来评估可浸出物。大多数信誉良好的过滤器与常见的溶出介质没有问题,但在一些低质量的滤膜供应商中观察到了实例。 案例研究8:溶出曲线的早期峰值 进行了溶出研究,其中在早期时间点溶出的药物百分比高于随后的时间点(图10)。 在这种情况下,对未溶出的材料进行取样,将其收集在过滤器表面上,并在过滤过程中溶出,从而产生更高的测量浓度。这种影响的重要性取决于过滤器表面上未溶出颗粒的溶出行为、取样体积和取样期间施加的压力。 解决这个问题的方法有三个方面: 1.    使用连接在取样针前端的预过滤器2.    降低样品体积,以确保仍然达到最小丢弃体积(结果是将分析方法从紫外分光光度法改为HPLC分析)3.    在书面方法中仔细描述取样程序 另一个潜在的挑战是在所有时间点使用相同的过滤器过滤样品溶液,以测定溶出曲线。这可能是为了避免在每个时间点使用过滤器的成本过高。在这些情况下,过滤器表面可能会残留未溶出的物质,其结果是在下一个时间点溶出,导致样品中的浓度较高,人为测量的溶出度较高。从假阳性结果的角度来看,这也是至关重要的,因为在规范时间点,失败的溶出性能会被接受。因此,过滤器的任何多次使用都需要仔细评估这些遗留风险。 除了选择正确的过滤器和建立协议以允许重复结果外,过滤器外壳的几何形状也会对采样产生影响。 案例研究9:过滤器外壳 剂量强度的增加使得有必要在溶出方法中加入表面活性剂(桨式装置,pH 4.5缓冲液,0.3%SDS,75rpm)。溶出通常在带有自动取样装置(ASD)单元的Sotax AT7智能系统上进行。在ASD装置的取样过程中,注射器柱塞推动空气通过注射器过滤器和套管进入溶出容器,以去除可能卡住的颗粒。然后ASD通过抽取样本并在取样前将其推回,对过滤器进行预冲洗,随后将其转移到HPLC瓶中。将SLS添加到溶出介质中,再加上1µm Pall Acrodisc过滤器(图11B),导致起泡和不完全取样(图11A)。使用1µm Pall Acrodisc PSF过滤器,该过滤器由与原始过滤器相同的材料制成,但具有更小、不同形状的外壳(图11B),消除了起泡问题(图11A)。尽管本示例可能对ASD设置的采样特别敏感,但它不仅说明了过滤材料和孔径的重要性,还说明了套管几何形状的重要性。 3.2 沉降篮 沉降篮可能会导致方法问题。在开发过程中,评估沉降篮设计对溶出方法性能的影响非常重要。口服控释产品的一个例子是,制剂的释放严重依赖于聚合物的初始水合作用。在常规溶出试验中,观察到了看似随机的快速释放片剂,并引发了调查。根本原因被确定与沉降篮有关:一组六个不合规的五线圈日式沉降篮被混合到一盒36个合规的七线圈沉降篮中。在聚合物完全水合之前,盘管数量的减少使配方受到更快速的侵蚀。这意味着实验室应仔细控制沉降篮组,并采用标签管理系统,以确保在将沉降篮组引入实验室之前对其进行标记和记录。在对经批准的产品进行沉降片设计转换之前,进行全面风险评估以确保与历史数据相等也是很重要的。 其他常见问题与药物相对于其平衡浓度过饱和的方法有关,如下一个案例研究所示。 案例10:采样后沉淀 在合同制造机构(CMO)使用桨式装置以50 rpm(60分钟后+冲击转速200 rpm)在900 mL无酶模拟胃液(SGFsp)、pH 4.5的乙酸盐缓冲液和pH 6.8的无酶模拟肠液(SIFsp)中进行具有pH依赖性溶出度的弱碱性开发药物的比较溶出试验。在SGFsp中溶出快速、稳定且完全,但在pH 4.5和SIFsp pH 6.8下观察到高可变性和出乎意料的高溶出值(相对于低溶出度)(图12A) 由于pH 4.5和SIFsp pH 6.8下的溶出度限制了溶出过程,并且由于在HPLC分析之前未稀释CMO处的溶出样品,因此评估了采样期间/之后药物过饱和和沉淀的假设。在没有稀释的情况下,在公司内部实验室内重复CMO实验,证实了高可变性和意外的高溶出值。 相反,在过滤后和HPLC分析之前引入稀释步骤(用0.1N盐酸1:1),得到了pH 4.5和SIFsp pH 6.8的显著更低(如预期)和更稳健/更少的可变溶出结果,如图12B所示。因此,可以假设在HPLC分析过程中,沉淀的药物颗粒最有可能从HPLC瓶中取出并注射到HPLC系统中。反过来,在HPLC运行期间用流动相稀释的沉淀颗粒的注射导致了高可变性和HPLC柱上过高的“局部”药物浓度。 4. 环境与人 溶出问题,就像所有基于实验室的问题一样,可能是由于在考虑不周的地点进行测试,或者是由于个人培训不足造成的。观察到一个训练水平不足的例子,在人工取样溶出时,从溶出杯1到6观察到明显的正偏差。这个问题是由于分析师在1分钟的时间内摇晃着放下药片,而桨叶在整个时间内都没有转动;在容器6中的片剂滴下后开始搅拌,然后在15分钟取样,再错开1分钟。这一过程的最终结果是,容器1中的片剂经历了5分钟的停滞“浸泡”,然后是15分钟的桨叶转动,而容器6经历了20分钟的桨叶旋转,其他容器介于两者之间。这被确定为实验室培训问题,并通过对受影响实验室的溶出技术分析师进行再培训,以及引入更清晰的手动溶出操作程序(即,只需停止桨足够长的时间,使药片下沉,然后在错开时间再次打开桨)来解决。 溶出是一种视觉观察非常重要的技术。专家在调查过程中的第一个问题通常是,“溶出杯的情况如何?”让受过良好培训的分析师在溶出过程中进行观察,并在观察潜在问题时使用手机或其他实验室记录设备拍摄照片或视频,通常可以证明这对于找到根本原因是非常宝贵的。或者,在开发过程中,配备适当放置的摄像机(例如下图的摄像装置)和所有溶出测试的视频记录的仪器设置尤其有助于减轻分析师注意异常活动、执行观察和/或记录证据的负担,同时遵守采样时间要求。观察锥形、“舞动”、漂浮、薄膜形成、胶囊溶出过程中的破裂点、过量气泡、泡沫或材料粘附在桨/容器上,对于确定异常溶出性能是否存在任何肉眼可见的原因非常重要。因此,在进行溶出试验时,最好培训分析师定期记录目视观察结果。 解散调查中的一个重要步骤是分析师访谈或方法演练(有时称为Gemba walk)。通过观察实验室正在进行的测试,而不是假设测试是按照经理或专家的期望进行的,从而在调查中取得了许多突破。在一个例子中,观察到了方法性能的突然变化,只有在方法演练过程中,溶出专家才发现另一个由不同组安装的设备在实验室工作台上引起了过度振动,影响了溶出测试。 环境和人的最终组成部分是数据完整性和验证。当观察到异常结果时,应该由第二位科学家彻底检查数据,并确认错误,确保没有简单的解释,如转录或计算错误。在开始任何调查之前,应根据实验室第二科学家审查程序检查所有异常溶出数据。 5. 检测 鱼骨图上的最后一个区域是标准溶液和样品溶液中药物浓度的测量。应对方法系统适用性标准进行检查和趋势分析,以确保在预期范围内运行。异常的高或低标准响应可能表明参考标准品的称重或溶出存在问题,或烧瓶尺寸、紫外比色皿路径长度或波长不正确。 如果使用色谱法,应谨慎检查流动相,以确保它们已正确制备,在保质期内,具有正确的pH值,并安装在正确的流动相管线上。同样,应检查色谱柱,以确保选择了正确的相、尺寸和粒度。 如果该方法未明确说明如何进行溶出计算,或者该方法处于早期开发阶段,且未充分定义和验证,则溶出计算本身可能是问题的根源。由于不正确或不一致地使用溶出百分比值的计算,出现了问题。这些通常是由于取样和针头冲洗导致的运行过程中体积变化导致的。这可以通过使用经验证的工具和/或现成的计算工具来处理数据而容易地避免。所有溶出杯的持续低或高结果通常与计算问题或稀释系数问题有关。 对于片剂重量、测定或冲击转速时间点的标准化,应谨慎使用单独的溶出杯校正,并应明确标记为已校正的数据,以避免在与未校正的历史数据进行比较时得出错误的结论。 最后,重要的是确保所有分析均在样品和标准溶液的稳定性窗口内进行,并且所有分析样品均正确储存在实验室内(例如,如果需要,应避光),因为未能按照验证储存样品可能会使任何数据失效。 偏差调查总结 溶出方法是多元的。为了确保结果反映真实的产品性能,并防止对产品性能的错误结论,必须在溶出方法中引入适当的控制措施。需要对方法、设备、材料、测量、人员和环境的潜在问题有充分的了解,以确保稳定和可重复的溶出性能。最小化操作因素的可变性将有助于增强产品的理解,并避免在产品生命周期后期进行昂贵的调查。投资分析师培训计划,了解设备组合的能力,引入质量控制(如审计跟踪和文件检查),并优先考虑设计良好的稳健性和耐用性研究,应减少溶出方法调查。 原文:Dissolution Method Troubleshooting: An Industry Perspective,James Mann等

查看更多
2022-11-30

浅析FDA指导原则中对申报用Franz测试装置的要求

前言:美国FDA于2022年10月发布了最新工业指南《In Vitro Permeation Test Studies for Topical Drug Products Submitted in ANDAs Guidance for Industry》,指南中469-475行提到:“The equipment, methodologies, and study conditions used in the IVPT pilot study (and the eventual IVPT pivotal study) should be appropriately validated or qualified. If an applicant elects to use equipment, methodologies, or study conditions that are different from those recommended in this guidance, the applicant should demonstrate why it was necessary and scientifically justified to do so. Detailed protocols and well-controlled study procedures are recommended to ensure the precise control of dosing, sampling, and other IVPT study parameters, as well as potential sources of experimental bias(原文截图如图1).”图1 《In Vitro Permeation Test Studies for Topical Drug Products Submitted in ANDAs Guidance for Industry》节选原文翻译如下:“IVPT前期研究(以及最终的IVPT关键研究)中使用的设备、方法和研究条件应经过适当验证或鉴定。如果申请人选择使用与本指南中建议的不同的设备、方法或研究条件,申请人应证明这样做的必要性和科学合理性。建议采用详细的方案和控制良好的研究程序,以确保精确控制给药、取样和其他IVPT研究参数,以及实验偏差的潜在来源。”鉴于FDA要求申请人证明使用非指南中的设备的必要性和科学性,为了避免各位研究人员使用非法规设备所带来的风险,锐拓仪器特结合现行版USP<1724>章节及即将实施的USP<1724>征求意见稿的内容,为各位制药同仁分析一下FDA要求中建议的USP<1724>标准扩散池的使用方式。 分析方法Analytical Methods分析根据《In Vitro Permeation Test Studies for Topical Drug Products Submitted in ANDAs Guidance for Industry》要求,对其支持的现行版USP<1724>章节中使用的Franz扩散池 Model A/B/C进行结构分析,为制药同仁提供各种Model的优缺点与使用范围。同时为了加强本文的前瞻性,避免广大同仁选择了没有未来的老旧测试装置,本文也对未来即将施行的征求意见稿USP<1724>章节Model 4/5进行了分析,让广大同仁及时了解FDA最新的测试趋势要求。1) USP<1724> Model A USP <1724> Model A是一款早期的自动化产品(如图2),D与E是水浴循环通道,其取样方式为部分取样,到达取样时间点时,设备向A中注入少量体积(如0.2ml)的新鲜的接受液,由于在取样之前,扩散池中是充满接受液的,当注入新鲜的接受液,受扩散池固定容积的影响,样品会从下往上从B出口挤出少量样品用于自动化检测【1】。设计优点:通过压注接受液置换等量样品的方法避免了扩散池被抽空后产生气泡的问题,同时也比较容易实现自动化取样。设计缺点:由于搅拌混合的影响,当从A口注入新鲜的接受液,在从B口中挤出接受液样品的同时,B中挤出样品是否能够充分代表该取样时间点下扩散池中的真实样品浓度呢?需要研究者进行充分的论证;同时,从A口中注入接受液会造成池体内压力增大,容易导致部分接受液向滤膜端(即C端)反向渗透;因为存在反向渗透的行为,可能导致注入的补液量的体积大于实际取得的接受液的体积,导致补液与取样不等;另外,如果接受液从C端反向渗透,造成样品被接受液浸泡,会对样品的真实释放行为产生重大影响,进而无法满足Higuchi方程模型的前提条件。 2)USP<1724> Model B USP <1724> Model B是一款目前全球通用的扩散池模型(如图3),B与C是水浴循环通道,其取样方式为部分取样或者全取样,Model B扩散池模型中的取样、补液,排气都通过A口进行。到达取样时间点时,(手动)从A口中取出少量样品(部分取样)或者倾倒出所有样品(全取样)用于分析,注入接受液/(补液)与排气泡等操作再从A口回补等量的接受液(部分取样)或者重新充满所有接受液(全取样),(手动)倾斜扩散池排出气泡并继续完成测试。与Model C 相比,Model B的密封圈D避免液体样品漏液,故Model B常用于乳液等流动性较强的半固体制剂测试。设计优点:可以实现部分取样与全取样;取样时出现交叉污染风险较低,得到的样品100%代表扩散池中的药液浓度。设计缺点:自动化程度低;扩散池连着水浴循环管道导致在全取样时拿出容器进行倾倒较为困难,并且排气泡操作也难以操作;A口对应的斜壁管道细长,且直径较小,此种扩散池的设计造成倾倒溶液与排除气泡的操作困难,不利于实验人员的手动操作,工作效率低,使用便捷性不高。 3)USP <1724> Model C USP <1724> Model C也是一款目前全球通用的扩散池模型,操作方式与Model B类似(如图3),B与C是水浴循环通道,其取样方式为部分取样或者全取样,Model C扩散池中的取样,注入接受液与排气泡都通过A口进行。到达取样时间点时,(手动)从A口中取出少量样品(部分取样)或者倾倒出所有样品(全取样)用于分析,再从A口回补等量的接受液(部分取样)或者重新充满所有接受液(全取样),(手动)倾斜扩散池排出气泡并继续完成测试。与Model B相比,Model C缺少密封圈结构D,所以建议把本扩散池用于流动性差的半固体制剂,例如乳膏等。设计优点:与Model B相似。设计缺点:也与Model B相似,但不能用于流动性强的半固体制剂的上样,例如:乳液。4)USP <1724> Model 4 USP <1724> Model 4是一款目前全球通用的扩散池模型(如图4),在USP<1724>征求意见稿被新增。与Model B/C相比,取消了水浴加热,改为干加热。其取样方式为部分取样或者全取样,Model4 的取样,注入接受液(补液)与排气泡都通过A口进行。到达取样时间点时,(手动)从A口中取出少量样品(部分取样)或者倾倒出所有样品(全取样)用于分析,再从A口回补等量的接受液(部分取样)或者重新充满所有接受液(全取样),(手动)倾斜扩散池排出气泡并继续完成测试。设计优点:可以实现部分取样与全取样;取样时出现交叉污染风险较低,得到的样品100%代表扩散池中的药液浓度;使用干加热的方式避免连着水浴管道,方便倾倒样品与排除气泡,提高使用的便捷性。设计缺点:自动化程度低;A管道细长,且直径太小,倾倒溶液与排除气泡的操作困难。 5)USP <1724>Model 5 USP<1724> Model 5是一款目前全球通用的大型测试系统(如图5),在USP<1724>征求意见稿中被新增。与Model 4相比,Model 5的接受液的体积可以通过更换转子与顶盖实现不同的接受液体积与不同的制剂暴露面积,让方法开发过程中实验参数的选择更为灵活。其取样方式为部分取样或者全取样,取样、注入接受液(补液)与排气泡都通过A口进行,但是Model 5 的A口对应的取样臂的管道更粗,方便倾倒液体与排气泡。到达取样时间点时,(机械自动)从A口中取出少量样品(部分取样)或者(手动)倾倒出所有样品(全取样)用于分析,再从A口(自动)回补等量的接受液(部分取样)或者(手动)重新充满所有接受液(全取样),全取样时,需要(手动)倾斜扩散池排出气泡并继续完成测试,部分取样因未产生气泡故无需(手动)倾斜扩散池排出气泡。设计优点:可以实现部分取样与全取样;取样时出现交叉污染风险较低,得到的样品100%代表扩散池中的药液浓度;使用干加热的方式避免连着水浴管道,方便倾倒样品与排除气泡。能够通过更换配件(高、低转子)实现多种溶媒体积、多种样品的暴露面积;较大内径的斜取样臂,使得更容易倾倒扩散池中的溶液与气泡;在部分取样时不需要抽空接受液,降低大量气泡的产生的可能性。设计缺点:多种转子、顶盖、扩散池组合,需要使用者对自身样品比较了解,选择合适的扩散池对药物进行分析。 总结Summary 本分析根据《In Vitro Permeation Test Studies for Topical Drug Products Submitted in ANDAs Guidance for Industry》中建议申请人选择使用USP<1724>中建议的扩散池进行前期实验研究与申报问题,总结了当前版USP<1724>与未来即将实行的USP<1724>征求意见稿版中的相关扩散池的优缺点,让各位制药同仁能够根据自身需求选择适合具体研究用的Franz扩散池装置。当研究者使用的扩散池设备不属于当前现行USP<1724>(Model A,B,C)及未来即将施行的新版USP<1724>(Model A,B,C,新增Model 4,5)时,应根据《In Vitro Permeation Test Studies for Topical Drug Products Submitted in ANDAs Guidance for Industry》中的规条款的要求:“如果申请人选择使用与本指南中建议的不同的设备、方法或研究条件,申请人应证明这样做的必要性和科学合理性。”,提前证明选择的相应的设备的必要性和科学合理性,以便应对相应的审查。 参考文献: 【1】A Primer on Automating the Vertical Diffusion Cell (VDC) Royal Hanson* and John Heaney Dissolution Technologies | MAY 2013 DOI:dx.doi.org / 10.14227 / DT200213P40

查看更多
2022-08-19

锐拓RT8透皮扩散系统应用案例——凝胶贴膏的体外释放测试

凝胶贴膏是指原料药物与亲水性适宜的基质混合后铺设在背衬材料上制成的贴膏剂。凝胶贴膏具有含水量较高、透气性较好、载药量大、吸收效率高、无异味、皮肤刺激性小等优点,更易被患者和临床医生所接受,已成为经皮给药系统发展的热门方向之一。 凝胶膏剂通常采用高分子材料为骨架材料,再加入交联剂、保湿剂、填充剂以及透皮促渗剂等形成具有一定粘度的假塑性流体。在使用时,药物成分会从骨架材料中释放出来并到达皮肤表面,进而经过表皮进入血液循环发挥作用。 所以,凝胶膏剂的药物成分的释放速率和透皮吸收速率将直接影响其临床疗效,是评价凝胶膏剂的重要质量指标。 凝胶膏剂的体外释放测试(IVRT)和体外透皮测试(IVPT)一般会使用Franz垂直扩散池法。本文将分享某凝胶膏剂的体外释放测试案例,希望能给您带来帮助和启发。 实验方法 实验仪器:锐拓 RT800 自动取样透皮扩散系统 装置:锐拓改良式Franz垂直扩散池 温度:32 ± 0.5℃ 介质:技术保密 转速:300 RPM 介质体积:40 mL 取样量/补液量:1 mL 凝胶膏剂直径:16 mm 筛选滤膜 凝胶膏剂的体外释放测试一般会选择合适的惰性和商业化的人工膜。待测样品在不同滤膜的透过速率可能不同。在进行方法开发时,应充分考察滤膜对样品的释放速率的影响。 下图展示了在滤膜筛选过程中,凝胶膏剂样品在其中三款滤膜下的体外释放测试结果。综合考量方法开发过程中的其他因素后,决定使用滤膜A作为测试滤膜。 实验结果 通过前期的方法开发,上样量、滤膜、介质、介质体积、转速等关键参数已经确定。并在后续阶段,对测试方法的准确度、重复性和区分力等关键指标进行了验证。 按照已经制定的方法,对凝胶膏剂样品进行体外释放测试。然后,根据 USP <1724>,计算在各个取样时间点每 1平方厘米面积下的累积释药量(Cumulative Amount Released): 测试结果如下图所示,累积释药量曲线的横坐标为时间的平方根。 凝胶膏剂样品的释放一般遵循 Higuch 公式,即药物的累积释药量与时间的平方根成正比。将 6 个测试样品在各个取样时间点的累积释药量与取样时间的平方根进行线性回归,得到回归方程和相关系数,并取其斜率值为释药速率常数。 结果讨论 结果表明,Franz垂直扩散池法的精密度高,重现性好。可以适用凝胶膏剂的体外释放测试,为乳膏产品的配方开发提供有价值的体外释放度测定数据。 得益于锐拓 RT800 自动取样透皮扩散系统的高精度自动化设计,有效地减少实验系统或手动操作引入的误差,让测试结果的重复性更加理想。

查看更多